Analysis on infinite configuration spaces,

 and L^{2}-Betti numbers associated with infinite particle systemsAlexei Daletskii
University of York, UK

Based on joint works with
S Albeverio, A. Kalyuzhnyi, Yu. Kondratiev,
E. Lytvynov, Yu. Samoilenko

Introduction: What is a Configuration Space?

X - topological space (e.g. \mathbb{R}^{d} or Riemannian manifold) Γ_{X} - space of locally finite subsets (configurations) in X :

$$
\Gamma_{X}=\{\gamma \subset X:|\gamma \cap \Lambda|<\infty, \Lambda \text { compact }\}
$$

Introduction: What is a Configuration Space?

X - topological space (e.g. \mathbb{R}^{d} or Riemannian manifold) Γ_{X} - space of locally finite subsets (configurations) in X :

$$
\Gamma_{X}=\{\gamma \subset X:|\gamma \cap \Lambda|<\infty, \Lambda \text { compact }\}
$$

- Statistical mechanics (models of gases) - Dobrushin 56, 70; Ruelle 63, 70)
- Quantum Field Theory - Goldin, Grodnik, Powers, Sharp 75
- Representation Theory - Gelfand, Graev, Vershik 75
- Probability (theory of point processes) - Föllmer 75; Preston 76, 79; Georgii 76
- Topology - Fadell 62; Bödingheimer (spaces of finite configurations)

Introduction: What is a Configuration Space?

X - topological space (e.g. \mathbb{R}^{d} or Riemannian manifold) Γ_{X} - space of locally finite subsets (configurations) in X :

$$
\Gamma_{X}=\{\gamma \subset X:|\gamma \cap \Lambda|<\infty, \Lambda \text { compact }\}
$$

- Statistical mechanics (models of gases) - Dobrushin 56, 70; Ruelle 63, 70)
- Quantum Field Theory - Goldin, Grodnik, Powers, Sharp 75
- Representation Theory - Gelfand, Graev, Vershik 75
- Probability (theory of point processes) - Föllmer 75; Preston 76, 79; Georgii 76
- Topology - Fadell 62; Bödingheimer (spaces of finite configurations) Γ_{X} as infinite dimensional manifold - Albeverio, Kondratiev, Röckner 96

Topology and measures

$$
\Gamma_{X} \ni \gamma \simeq \sum_{x \in \gamma} \delta_{x} \in \mathcal{M}(X), \quad \delta_{x}-\text { Dirac measure }
$$

Vague topology on Γ_{X} - weak topology induced from $\mathcal{M}(X)$

Topology and measures

$$
\Gamma_{X} \ni \gamma \simeq \sum_{x \in \gamma} \delta_{x} \in \mathcal{M}(X), \quad \delta_{x}-\text { Dirac measure }
$$

Vague topology on Γ_{X} - weak topology induced from $\mathcal{M}(X)$
Poisson Measure π_{σ} (with reference measure σ)
(1) Consider space of finite configurations in a compact $\Lambda \subset X$

$$
\Gamma_{\Lambda}=\cup_{n} \widetilde{\Lambda^{n}} / S_{n}
$$

define probability measure π_{σ}^{Λ} on Γ_{Λ} via formula

$$
\pi_{\sigma}^{\Lambda}=e^{-\sigma(\Lambda)} \sum_{n} \frac{1}{n!} \sigma^{n} \quad(\sigma-\text { infinite measure on } X)
$$

(2) Define

$$
\pi_{\sigma}=\lim \pi_{\sigma}^{\Lambda}, \Lambda \uparrow X
$$

Quasi-invariance and gradient

- $\operatorname{Diff}_{0}(X)$ - group of compactly supported diffeomorphisms of X - acts on Γ_{X} :

$$
\{\ldots, x, y, z, \ldots\} \mapsto\{\ldots, \varphi(x), \varphi(y), \varphi(z), \ldots\}, \quad \varphi \in \operatorname{Diff}_{0}(X)
$$

Main fact: π_{σ} is $\operatorname{Diff}_{0}(X)$-quasi-invariant.

- Γ-gradient: for $v \in \operatorname{Vect}_{0}(X), \quad F: \Gamma_{X} \rightarrow \mathbb{R}$ set

$$
\begin{aligned}
\nabla_{v}^{\Gamma} F(\gamma) & :=\frac{d}{d t} F\left(\varphi_{t}^{v} \gamma\right)_{t=0} \\
& =\sum_{x \in \gamma}\left(\nabla_{x} F(\gamma), v(x)\right)_{T_{x} X}
\end{aligned}
$$

and

$$
\nabla^{\Gamma} F(\gamma):=\left(\nabla_{x} F(\gamma)\right)_{x \in \gamma} \in \bigoplus_{x \in \gamma} T_{x} X
$$

- Tangent space (Gelfand, Graev, Vershik 75):

$$
T_{\gamma} \Gamma_{X}:=\bigoplus_{x \in \gamma} T_{x} X
$$

Integration by parts formula

Albeverio, Kondratiev, Röckner 96

$$
\begin{aligned}
\int_{\Gamma_{X}} \nabla_{v}^{\Gamma} F(\gamma) \pi(d \gamma) & =-\int_{\Gamma_{X}} F(\gamma) B_{\pi}^{v}(\gamma) \pi(d \gamma) \\
B_{\pi}^{v}(\gamma) & =\left\langle\beta_{\sigma}^{v}, \gamma\right\rangle
\end{aligned}
$$

for local function $F($ that is $F(\gamma)=F(\gamma \cap \Lambda))$
$B_{\pi}^{v}(\gamma)$ - logarithmic derivative of π along v,
β_{σ}^{v} - logarithmic derivative of σ along $v(=\operatorname{div} v$ if σ is Riemannian volume)

General notation: $\langle f, \gamma\rangle:=\sum_{x \in \gamma} f(x), \quad f \in C_{0}(X)$

Laplace (Dirichlet) operator

Dirichlet form: for local functions F and G on Γ_{X}

$$
\begin{aligned}
\mathcal{E}_{\pi}(F, G): & =\int_{\Gamma_{X}}\left(\nabla^{\Gamma} F(\gamma), \nabla^{\Gamma} G(\gamma)\right)_{T_{\gamma} \Gamma_{X}} \pi(d \gamma) \\
& \stackrel{I B P}{=}-\int_{\Gamma_{X}}\left(H_{\pi}^{\Gamma} F\right)(\gamma) G(\gamma) \pi(d \gamma)
\end{aligned}
$$

Dirichlet operator $H_{\pi}^{\Gamma} F(\gamma)=\sum_{x \in \gamma}\left(\Delta_{x}+\beta_{\sigma} \nabla_{x}\right) F(\gamma)$ - self-adjoint operator in $L^{2}\left(\Gamma_{X}, \pi\right)$

- H_{π}^{Γ} is essentially self-adjoint on smooth local functions
- $\operatorname{Ker} H_{\pi}^{\Gamma}=\{$ const $\}$
- $L^{2}\left(\Gamma_{X}, \pi\right) \simeq \operatorname{Fock}\left(L^{2}(X, \sigma)\right)$ and $H_{\pi}^{\Gamma} \simeq$ second quantization of $\Delta+\beta_{\sigma} \nabla$
- $\exp \left(-t H_{\pi}^{\Gamma}\right)$ - Markov semigroup, corresponding stochastic process is independent Brownian motion of particles

Where to go now?

$\left(L^{2}\left(\Gamma_{X}, \pi\right), H_{\pi}^{\Gamma}\right)$ Free Gas

$\left(L^{2}\left(\Gamma_{X}, \mu\right), H_{\mu}^{\Gamma}\right)$
Interacting Gas
[AKR et al]

$$
\left(L_{\mu}^{2} \Omega^{p}, H_{\mu}^{(p)}\right)
$$

$$
\begin{aligned}
& \quad\left(L_{\pi}^{2} \Omega^{p}, H_{\pi}^{(p)}\right) \\
& \text { de Rham Complex }
\end{aligned}
$$

μ is Gibbs or cluster Gibbs measure

Differential forms on configuration space

Reminder: $T_{\gamma} \Gamma_{X}=\bigoplus_{x \in \gamma} T_{x} X$

- 1-form (vector field) $\quad \Gamma_{X} \ni \gamma \mapsto \omega(\gamma) \in T_{\gamma} \Gamma_{X}$
- p-form

$$
\Gamma_{X} \ni \gamma \mapsto \omega(\gamma) \in \Lambda^{p} T_{\gamma} \Gamma_{X}
$$

- We work with square-integrable forms $\omega \in L_{\pi}^{2} \Omega^{p}$.

Define Hodge differential

$$
d_{p}: L_{\pi}^{2} \Omega^{p} \rightarrow L_{\pi}^{2} \Omega^{p+1}
$$

by $d_{p} \omega(\gamma)=$ anti-symmetrization $\left(\nabla^{\Gamma} \omega(\gamma)\right)$.

$$
d_{p}^{*}: L_{\pi}^{2} \Omega^{p+1} \rightarrow L_{\pi}^{2} \Omega^{p}
$$

is densely defined (because of IBP)

- Hodge-de Rham Laplacian

$$
\mathbb{H}^{(p)}:=d_{p} d_{p}^{*}+d_{p-1}^{*} d_{p-1},
$$

self-adjoint in $L_{\pi}^{2} \Omega^{p}$

Decomposition of Hodge-de Rham Laplacian

Albeverio, AD, Lytvynov:
(1) \exists isometry $\mathcal{I}^{p}: L_{\pi}^{2} \Omega^{p} \rightarrow L^{2}\left(\Gamma_{X}, \pi\right) \otimes\left[\bigoplus_{m=1}^{p} L_{\sigma}^{2} \Omega^{p}\left(X^{m}\right)\right]$
(2)

$$
\mathbf{H}_{\pi}^{(p)} \stackrel{\mathcal{I}^{p}}{\sim} H_{\pi}^{\Gamma} \otimes \mathbf{1}+\mathbf{1} \otimes\left[\sum_{m=1}^{p} H_{X^{m}}^{(p)}\right]
$$

where $H_{X^{m}}^{(p)}$ is Hodge-de Rham on X^{m}
(3) Künneth formula

$$
\operatorname{Ker} \mathbf{H}_{\pi}^{(p)} \stackrel{\mathcal{I}^{p}}{\simeq} \bigoplus_{s_{1}, \ldots, s_{d}}\left(\mathcal{H}_{X}^{(1)}\right)^{\stackrel{1}{\diamond s_{1}}} \otimes \ldots \otimes\left(\mathcal{H}_{X}^{(d)}\right)^{\stackrel{d}{\diamond s_{d}}}
$$

$$
\mathcal{H}_{X}^{(m)}:=\operatorname{Ker} H_{X}^{(m)}, d:=\operatorname{dim} X
$$

$$
\diamond_{s}=\left\{\begin{array}{c}
\widehat{\bigotimes}, m \text { even } \\
\Lambda, m \text { odd }
\end{array}\right.
$$

Corollary: let $\beta_{m}:=\operatorname{dim} \mathcal{H}_{X}^{(m)}<\infty$. Then

$$
\operatorname{dim} \operatorname{Ker} \mathbf{H}_{\pi}^{(p)}=\sum_{s_{1}, \ldots, s_{d}} \beta_{1}^{\left(s_{1}\right)} \ldots \beta_{d}^{\left(s_{d}\right)}
$$

$\beta_{m}^{(s)}=\binom{\beta_{m}}{s}, m$ odd, and $\beta_{m}^{(s)}=\binom{\beta_{m}+s-1}{s}, m$ even.
Example: manifold with cylinder end $X=M \cup\left(N \times \mathbb{R}^{1}\right)$, M compact with boundary N.
If $d=2$ then $\beta_{0}=\beta_{2}=0, \beta_{1}<\infty$. Then

$$
\operatorname{dim} \operatorname{Ker} \mathbf{H}_{\pi}^{(p)}=\left\{\begin{array}{cc}
\binom{\beta_{1}}{p} & \text { if } p \leq \beta_{1} \\
0 & \text { if } p>\beta_{1}
\end{array}\right.
$$

Remark: In general, $\operatorname{dim} \mathcal{H}_{X}^{(m)}=\infty$ because X is not compact

L2-Betti numbers (M. Atiyah 76)

Assumption: $\exists G \subset$ Iso X, infinite discrete; $M=X / G$ - compact manifold. Example: $X=\mathbb{H}^{d}$-hyperbolic space

$$
\text { group action } \quad G \in g \mapsto T_{g} \in \mathcal{B}\left(L^{2} \Omega^{p}(X)\right)
$$

Commutant of G-action

$$
\mathcal{A}:=\left\{T_{g}, g \in G\right\}^{\prime} \subset \mathcal{B}\left(L^{2} \Omega^{p}(X)\right)-
$$

von Neumann algebra (I_{∞} factor if G is "strongly" non-commutative). Orthogonal projection

$$
P: L^{2} \Omega^{p}(X) \rightarrow \mathcal{H}_{X}^{(p)}
$$

- $P \in \mathcal{A}, L^{2}$-Betti number $b_{n}=\operatorname{dim}_{G} \mathcal{H}_{X}^{(p)}:=\operatorname{Tr}_{\mathcal{A}} P<\infty$
- $b_{n}=0$ iff $\operatorname{dim} \mathcal{H}_{X}^{(m)}<\infty$
- Index $_{\mathcal{A}}\left(d+d^{*}\right):=\sum(-1)^{p} b_{p}=\chi(M)$ - Euler characteristic of M

Traces of projections in tensor products of factors

$\mathcal{H} \subset \mathfrak{X}$ - Hilbert spaces; $P: \mathfrak{X} \rightarrow \mathcal{H}$ - orthogonal projection; assume $P \in \mathcal{A}$ - some von Neumann algebra $\neq \mathcal{B}(\mathcal{H}), \operatorname{Tr}_{\mathcal{A}} P<\infty$. Define

$$
P_{s}^{(n)}: \mathfrak{X}^{\otimes n} \rightarrow \mathcal{H}^{\otimes n}, \quad P_{a}^{(n)}: \mathfrak{X}^{\otimes n} \rightarrow \mathcal{H}^{\wedge n} .
$$

$P_{s}^{(n)}, P_{a}^{(n)} \in\left\{\mathcal{A}^{\otimes n},\left\{U_{\alpha}, \alpha \in S_{n}\right\}\right\}^{\prime \prime}:=\mathcal{A}^{(n)}\left(\neq \mathcal{A}^{\otimes n}\right.$ in general $)$.

Traces of projections in tensor products of factors

$\mathcal{H} \subset \mathfrak{X}$ - Hilbert spaces; $P: \mathfrak{X} \rightarrow \mathcal{H}$ - orthogonal projection; assume $P \in \mathcal{A}$ - some von Neumann algebra $\neq \mathcal{B}(\mathcal{H}), \operatorname{Tr}_{\mathcal{A}} P<\infty$.
Define

$$
P_{s}^{(n)}: \mathfrak{X}^{\otimes n} \rightarrow \mathcal{H}^{\otimes n}, \quad P_{a}^{(n)}: \mathfrak{X}^{\otimes n} \rightarrow \mathcal{H}^{\wedge n} .
$$

$P_{s}^{(n)}, P_{a}^{(n)} \in\left\{\mathcal{A}^{\otimes n},\left\{U_{\alpha}, \alpha \in S_{n}\right\}\right\}^{\prime \prime}:=\mathcal{A}^{(n)}\left(\neq \mathcal{A}^{\otimes n}\right.$ in general $)$.

Theorem

1) $\mathcal{A}-\mathrm{II}_{1}$-factor. Then

$$
\begin{aligned}
\mathcal{A}^{(n)} & =W^{*}\left(\mathcal{A}^{\otimes n}, S_{n}\right) \quad \text { (cross-product) } \\
\operatorname{Tr}_{\mathcal{A}} P_{s}^{(n)} & =\operatorname{Tr}_{\mathcal{A}} P_{a}^{(n)}=\frac{\left(\operatorname{Tr}_{\mathcal{A}} P\right)^{n}}{n!}
\end{aligned}
$$

2) $\mathcal{A}-\mathrm{II}_{\infty}$-factor, $\mathcal{A}=\mathcal{B}\left(\mathbb{C}^{m}\right) \otimes \mathcal{M}, \mathcal{M}-\mathrm{II}_{1}$-factor. Then

$$
\mathcal{A}^{(n)}=\mathcal{B}\left(\mathbb{C}^{m}\right)^{\otimes n} \otimes W^{*}\left(\mathcal{M}^{\otimes n}, S_{n}\right)
$$

L2-Betti numbers of Poisson configuration spaces

$$
b_{p}\left(\Gamma_{X}\right):=\operatorname{dim}_{G} \operatorname{Ker} \mathbf{H}_{\pi}^{(p)}=\sum_{s_{1}, \ldots, s_{d}} \frac{b_{1}^{s_{1}}}{s_{1}!} \cdots \frac{b_{d}^{s_{d}}}{s_{d}!}, \quad d=\operatorname{dim} X-1
$$

Example. $X=\mathbb{H}^{d+1}$ - hyperbolic space,

$$
b_{p}(X)=\left\{\begin{array}{l}
0, p \neq \frac{1}{2}(d+1) \\
c, p=\frac{1}{2}(d+1)
\end{array}, p=1,2, \ldots, d\right.
$$

Then

$$
b_{p}\left(\Gamma_{X}\right)=\left\{\begin{array}{l}
0, p \neq \frac{1}{2}(d+1) s \\
\frac{c^{s}}{s!}, p=\frac{1}{2}(d+1) s
\end{array}, s=1,2, \ldots\right.
$$

Index of the Dirac operator

$$
\begin{aligned}
D & :=d+d^{*:}: L_{\pi}^{2} \Omega^{\text {even }} \rightarrow L_{\pi}^{2} \Omega^{\text {odd }} \\
\operatorname{ind}_{G} & =\operatorname{dim}_{G} \operatorname{Ker} D-\operatorname{dim}_{G} \operatorname{Ker} D^{*} \\
& =\sum_{p}(-1)^{p} b_{p}\left(\Gamma_{X}\right)=\exp \chi(X / G)
\end{aligned}
$$

Gibbs measures on configuration spaces

$v: \mathbb{R} \rightarrow \mathbb{R} ; \rho$ - distance in X; pair potential $V(x, y)=v(\rho(x, y))$;

$$
\text { Energy } \quad E(\gamma)=\sum_{x, y \in \gamma} V(x, y), \gamma \in \Gamma_{X}
$$

Gibbs measure $\mu(d \gamma)=" \frac{1}{Z} \exp (-E(\gamma)) \pi(d \gamma) "$.

- μ - probability measure on Γ_{X} - well-defined (conditions on potential V);
- in general, μ is not unique (phase transitions);
- μ is $\operatorname{Diff}_{0}(X)$-quasi-invariant;
- μ-symmetric Hodge-de Rham Laplacian in $L^{2}\left(\Gamma_{X}, \mu\right)$ has complicated structure.

Random Witten Laplacian on X

Define measure $\sigma_{\gamma}\left(\gamma \in \Gamma_{X}\right)$ on X :

$$
\sigma_{\gamma}(d x)=\exp \left(-E_{\gamma}(x)\right) d x, \text { where } E_{\gamma}(x)=\sum_{y \in \gamma} V(x, y)
$$

Witten Laplacian $H_{\sigma_{\gamma}}^{(p)}$ associated with σ_{γ} : symmetrization of the classical Hodge-de Rham $H^{(p)}$ in $L_{\sigma_{\gamma}}^{2} \Omega^{p}(X)$.

$$
\begin{aligned}
L_{\sigma_{\gamma}}^{2} \Omega^{p}(X) & \sim L^{2} \Omega^{p}(X) \\
H_{\sigma_{\gamma}}^{(p)} & \sim H_{\gamma}^{(p)}=H^{(p)}+W_{\gamma}^{(p)}
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{\gamma}^{(p)}(x):\left(T_{x} X\right)^{\wedge p} \rightarrow\left(T_{x} X\right)^{\wedge p} \\
& W_{\gamma}^{(p)}(x)=\left\|\nabla E_{\gamma}(x)\right\|^{2} \mathrm{id}+\Delta E_{\gamma}(x) \mathrm{id}+\left(\nabla^{2} E_{\gamma}(x)\right)^{\wedge p} .
\end{aligned}
$$

$H_{\gamma}^{(p)}$ is self-adjoint positive operator in $L^{2} \Omega^{p}(X)$

Trace of the semigroup

Goal: to define (von Neumann) trace of the semigroup $e^{-t H_{l}^{(p)}}$
Framework: $G \subset$ Iso X, infinite discrete; $M=X / G$ - compact manifold; σ_{γ} is G-invariant
Action of G on Γ_{χ} :

$$
\gamma=\{\ldots, x, y, z, \ldots\} \mapsto g \gamma=\{\ldots, g x, g y, g z, \ldots\}, g \in G ;
$$

T_{g} - associated (unitary) representation of G in $L^{2} \Omega^{p}(X)$;

$$
T_{g} H_{\gamma}^{(\rho)} T_{g}^{-1}=H_{g \gamma}^{(p)} .
$$

Thus $e^{-t H_{r}^{(p)}} \notin \mathcal{A}:=\left\{T_{g}, g \in G\right\}^{\prime}$ for μ-a.a. $\gamma \in \Gamma_{X}$ (since $\mu(\{\gamma: g \gamma=\gamma \forall g \in G\})=0$).

Define

$$
\begin{aligned}
\mathcal{C} & =\left\{A: \Gamma_{X} \rightarrow \mathcal{B}\left(L^{2} \Omega^{*}(X)\right), \text { bounded, } A(g \gamma)=T_{g} A(\gamma) T_{g}^{-1}\right\}, \\
\omega(A) & =\int_{\Gamma_{X}} \int_{X / G} a_{\gamma}(x, x) d x \mu(d \gamma), a_{\gamma} \text { - integral kernel of } A .
\end{aligned}
$$

Theorem

\mathcal{C} is a von Neumann algebra, ω is a faithful normal semifinite trace on \mathcal{C}.
$\mathbf{P}_{\gamma}^{(p)}$ - ortho projection onto Ker $H_{\gamma}^{(p)}$. Consider maps
$\mathbf{P}^{(p)}: \gamma \mapsto \mathbf{P}_{\gamma}^{(p)}, e^{-t H^{(p)}}: \gamma \mapsto e^{-t H_{\gamma}^{(p)}}$. Then $\mathbf{P}^{(p)}, e^{-t H^{(p)}} \in \mathcal{C}$.

Theorem

1)

$$
\omega\left(\mathbf{P}^{(p)}\right)<\infty, \omega\left(e^{-t H^{(p)}}\right)<\infty
$$

2) McKean-Singer formula

$$
\operatorname{STR} e^{-t H}:=\sum_{p}(-1)^{p} \omega\left(e^{-t H_{\gamma}^{(p)}}\right)=\operatorname{STR} \mathbf{P}
$$

3) STR $\mathbf{P}=\chi(X / G)$ for any Gibbs measure μ

Proof is based on the probabilistic representation of $e^{-t H^{(p)}}$, McKean-Singer formula in general von Neumann algebras (Connes-Moscovichi) and study of short-time asymptotics of STR $e^{-t H}$.

Corollary

Let $\chi(X / G) \neq 0$ and μ be G-ergodic.
Then

$$
\operatorname{dim} \operatorname{Ker} H_{\gamma}=\infty \text { for } \mu \text {-a.a. } \gamma \in \Gamma_{X} .
$$

Open questions

- to compute individual Betti numbers
- are there measures for which the index is different?
- to consider the full Hodge-de Rham operator associated with μ on Γ_{X}

Recent developments- analysis of cluster measures

"Between isolated atoms or molecules and bulk materials there lies a class of unique structures, known as clusters, that consist of a few to hundreds of atoms or molecules. Within this range of "nanophase" ... materials may exhibit novel properties due to quantum confinement effects."

Dynamics of clusters: From elementary to biological structures. Po-Y. Cheng, J.S. Baskin, A.H. Zewail (Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology) PNAS, 2006

Recent developments- analysis of cluster measures

"Between isolated atoms or molecules and bulk materials there lies a class of unique structures, known as clusters, that consist of a few to hundreds of atoms or molecules. Within this range of "nanophase" ... materials may exhibit novel properties due to quantum confinement effects."

Dynamics of clusters: From elementary to biological structures. Po-Y. Cheng, J.S. Baskin, A.H. Zewail (Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology) PNAS, 2006

What is a Cluster Point Process (CPP)? (e.g. Daley, Vere-Jones)

- Take a random configuration $\gamma_{c} \subset X$ of invisible centres.
- To each $x \in \gamma_{c}$, attach a set $Z_{x}=\left\{z_{j}^{(x)}\right\}_{j=1}^{N}$ of observable points (cluster at x).
- Resulting configuration $Z=\cup_{x \in \gamma_{c}} Z_{x}$ is a Cluster Point Process.

Cluster measure - distribution of CPP

Construction of cluster measures on $\Gamma_{X}(\mathrm{~L}$. Bogachev, AD)

(1) "Unpacking" mapping $\mathfrak{p}: \Gamma_{X^{n}} \rightarrow \Gamma_{X}$

$$
\begin{aligned}
X^{n} & \ni \bar{x}=\left(x_{1}, \ldots x_{n}\right) \stackrel{p}{\mapsto}\left\{x_{1}, \ldots x_{n}\right\} \subset X, \\
\Gamma_{X^{n}} & \ni\{\ldots, \bar{x}, \bar{y}, \bar{z}, \ldots\} \stackrel{p}{\mapsto}\left\{\ldots x_{1}, \ldots x_{n}, y_{1}, \ldots y_{n}, z_{1}, \ldots z_{n}, \ldots\right\} \in \Gamma_{X} .
\end{aligned}
$$

(2) Poisson or Gibbs measure μ on $\Gamma_{X^{n}}$.
(3) Cluster measure $\mu_{c l}:=p^{*} \mu$:

$$
\mu_{c l}(A):=\mu(\mathfrak{p}(A)) .
$$

