The isotopy problem of braids
The isotopy problem of braids
Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, France
The isotopy problem of braids

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, France

N-KOOK Seminar, Osaka State University, May 16, 2015
The braid isotopy problem is a problem of medium difficulty,
The isotopy problem of braids

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, France

N-KOOK Seminar, Osaka State University, May 16, 2015

- The braid isotopy problem is a problem of medium difficulty, with many (really) different solutions illustrating various approaches to Artin’s braid groups.
The braid isotopy problem is a problem of medium difficulty, with many (really) different solutions illustrating various approaches to Artin’s braid groups.

Here: a survey of some solutions:
The braid isotopy problem is a problem of medium difficulty, with many (really) different solutions illustrating various approaches to Artin’s braid groups.

Here: a survey of some solutions:
 - one algebraic solution: the greedy normal form
• The braid isotopy problem is a problem of medium difficulty, with many (really) different solutions illustrating various approaches to Artin’s braid groups.

• Here: a survey of some solutions:
 ▶ one algebraic solution: the greedy normal form
 ▶ two topological solutions: Dynnikov’s coordinates, Bressaud’s relaxation method
The braid isotopy problem is a problem of medium difficulty, with many (really) different solutions illustrating various approaches to Artin’s braid groups.

Here: a survey of some solutions:

- one algebraic solution: the greedy normal form
- two topological solutions: Dynnikov’s coordinates, Bressaud’s relaxation method
 [and two more: the alternating normal form (yesterday),]
The isotopy problem of braids

Patrick Dehornoy

The braid isotopy problem is a problem of medium difficulty, with many (really) different solutions illustrating various approaches to Artin’s braid groups.

• Here: a survey of some solutions:
 ▶ one algebraic solution: the greedy normal form
 ▶ two topological solutions: Dynnikov’s coordinates, Bressaud’s relaxation method
 [and two more: the alternating normal form (yesterday), handle reduction (ILD)]
Plan:
Plan:

- 1. The braid isotopy problem
Plan:

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure
Plan:

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure
- 3. Dynnikov’s coordinates
Plan:

• 1. The braid isotopy problem
• 2. Greedy normal form and the Garside structure
• 3. Dynnikov’s coordinates
• 4. Bressaud’s relaxation algorithm
Plan:

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure
- 3. Dynnikov’s coordinates
- 4. Bressaud’s relaxation algorithm
The braid isotopy problem
• A 3-strand braid diagram:
• A 3-strand braid diagram:
• A 3-strand braid diagram:

(no U-turn allowed)
• A 3-strand braid diagram:

(no U-turn allowed)

• Isotopy Problem:
The braid isotopy problem

- A 3-strand braid diagram:

\[
\begin{array}{c}
\includegraphics[width=0.5\textwidth]{braid_diagram.png}
\end{array}
\]

(no U-turn allowed)

- **Isotopy Problem:**
 Given two n-strand braid diagrams, can one deform them to one another?
The braid isotopy problem

- **A 3-strand braid diagram:**

 ![A 3-strand braid diagram]

 (no U-turn allowed)

- **Isotopy Problem:**
 Given two n-strand braid diagrams, can one deform them to one another?

 ![Isotopy Problem]
The braid isotopy problem

- A 3-strand braid diagram:

![3-strand braid diagram](image)

(no U-turn allowed)

- Isotopy Problem:
 Given two n-strand braid diagrams, can one deform them to one another?

![Deformed braid diagrams](image)

is isotopic to
• A 3-strand braid diagram:

![3-strand braid diagram](image)

(no U-turn allowed)

• Isotopy Problem:
 Given two \(n\)-strand braid diagrams, can one deform them to one another?

![Isotopy example](image)

is isotopic to
• A 3-strand braid diagram:

• Isotopy Problem:
 Given two n-strand braid diagrams, can one deform them to one another?

\[
\text{is isotopic to}
\]
The braid isotopy problem

• A 3-strand braid diagram:

• Isotopy Problem: Given two n-strand braid diagrams, can one deform them to one another?

• More formally: view braid diagrams as projections of 3D-diagrams in $D^2 \times (0, 1)$,
The braid isotopy problem

- A 3-strand braid diagram:

![Braid diagram with no U-turn allowed](image)

- Isotopy Problem:
 Given two \(n \)-strand braid diagrams, can one deform them to one another?

![Isotopic braid diagrams](image)

- More formally: view braid diagrams as projections of 3D-diagrams in \(D^2 \times (0, 1) \),

![Projection of 3D-diagram](image)
- A 3-strand braid diagram:

- Isotopy Problem: Given two n-strand braid diagrams, can one deform them to one another?

- More formally: view braid diagrams as projections of 3D-diagrams in $D^2 \times (0, 1)$,
The braid isotopy problem

• A 3-strand braid diagram:

![Braid Diagram](image)

(no U-turn allowed)

• Isotopy Problem:
 Given two n-strand braid diagrams, can one deform them to one another?

![Isotopy Example](image)

is isotopic to

• More formally: view braid diagrams as projections of 3D-diagrams in $D^2 \times (0,1)$,

![3D Diagram](image)

and consider ambient isotopy leaving the end-disks fixed.
• Concatenation of braid diagrams:
- **Concatenation** of braid diagrams:
• **Concatenation** of braid diagrams:
• Concatenation of braid diagrams:

- Associative;
• Concatenation of braid diagrams:

- Associative;
- Compatible with isotopy, hence induces a well-defined product on classes;
• **Concatenation** of braid diagrams:

![Example of concatenation of braid diagrams]

- Associative;
- Compatible with isotopy, hence induces a well-defined product on classes;
- Admits the unbraided diagram $[\emptyset]$ as a neutral element;
• **Concatenation** of braid diagrams:

![Diagram]

- Associative;
- Compatible with isotopy, hence induces a well-defined product on classes;
- Admits the unbraided diagram $[\emptyset]$ as a neutral element;
- Every diagram has an inverse, its `mirror`-image:
Braid groups

- **Concatenation** of braid diagrams:

 ![Braid Diagrams](image)

 - Associative;
 - Compatible with isotopy, hence induces a well-defined product on classes;
 - Admits the unbraided diagram $[\emptyset]$ as a neutral element;
 - Every diagram has an inverse, its mirror-image:

 ![Braid Diagram](image)
• **Concatenation** of braid diagrams:

\[
\begin{array}{c}
\text{braid} \\
\text{braid} \\
\text{braid}
\end{array}
\ast
\begin{array}{c}
\text{braid} \\
\text{braid} \\
\text{braid}
\end{array} =
\begin{array}{c}
\text{braid} \\
\text{braid} \\
\text{braid}
\end{array}
\]

- Associative;
- Compatible with isotopy, hence induces a well-defined product on classes;
- Admits the unbraided diagram \([\emptyset]\) as a neutral element;
- Every diagram has an inverse, its **mirror**-image:
• **Concatenation** of braid diagrams:

\[
\begin{array}{c}
\text{braid} \quad \ast \quad \text{braid} \\
\text{braid} \quad \ast \quad \text{braid}
\end{array}
\]

- Associative;
- Compatible with isotopy, hence induces a well-defined product on classes;
- Admits the unbraided diagram $[\emptyset]$ as a neutral element;
- Every diagram has an inverse, its mirror-image:
• **Concatenation** of braid diagrams:

\[\begin{array}{ccc}
\text{braid} & \ast & \text{braid} \\
\text{braid} & \ast & \text{braid}
\end{array} \]

- Associative;
- Compatible with isotopy, hence induces a well-defined product on classes;
- Admits the unbraided diagram $[\emptyset]$ as a neutral element;
- Every diagram has an inverse, its *mirror*-image:
- **Concatenation** of braid diagrams:

 - Associative;
 - Compatible with isotopy, hence induces a well-defined product on classes;
 - Admits the unbraided diagram $[\emptyset]$ as a neutral element;
 - Every diagram has an inverse, its mirror-image:

- For every $n \geq 1$: the group B_n of n-strand braids.
- **Concatenation** of braid diagrams:

 [Diagram showing concatenation of braid diagrams]

 - Associative;
 - Compatible with isotopy, hence induces a well-defined product on classes;
 - Admits the unbraided diagram $[\emptyset]$ as a neutral element;
 - Every diagram has an inverse, its mirror-image:

 [Diagram showing the mirror-image]

- For every $n \geq 1$: the group B_n of n-strand braids.
• The group structure of B_n makes the Braid Isotopy Problem easier:
• The group structure of B_n makes the Braid Isotopy Problem easier:
 ▶ Reduces to the Braid Triviality Problem: $D' \approx D \iff D^{-1} \ast D' \approx [\emptyset]$.
The group structure of B_n makes the Braid Isotopy Problem easier:

- Reduces to the Braid Triviality Problem: $D' \approx D \Leftrightarrow D^{-1} \ast D' \approx [\emptyset]$.
- Enables one to use algebraic tools,
Artin’s presentation

• The group structure of B_n makes the Braid Isotopy Problem easier:
 ▶ Reduces to the Braid Triviality Problem: $D' \cong D \iff D^{-1} \ast D' \cong [\emptyset]$.
 ▶ Enables one to use algebraic tools, provided one has a presentation of B_n.
• The group structure of B_n makes the Braid Isotopy Problem easier:
 ▶ Reduces to the Braid Triviality Problem: $D' \approx D \iff D^{-1} \ast D' \approx [\emptyset]$.
 ▶ Enables one to use algebraic tools, provided one has a presentation of B_n.

• **Artin** generators: Every n-strand braid diagram is a (finite) concatenation of elementary diagrams with one crossing,
• The group structure of B_n makes the Braid Isotopy Problem easier:
 ▶ Reduces to the Braid Triviality Problem: $D' \approx D \iff D^{-1} \ast D' \approx [\emptyset]$.
 ▶ Enables one to use algebraic tools, provided one has a presentation of B_n.

• Artin generators: Every n-strand braid diagram is a (finite) concatenation of elementary diagrams with one crossing, hence of the form

\[
\sigma_i : \begin{array}{c}
\vdots \\
\vdots \\
\sigma_i \\
\vdots \\
\vdots \\
\end{array} \begin{array}{c}
\vdots \\
\vdots \\
i+1 \\
i \\
\vdots \\
1 \\
\end{array}
\]
• The group structure of B_n makes the Braid Isotopy Problem easier:
 ▶ Reduces to the Braid Triviality Problem: $D' \approx D \iff D^{-1} * D' \approx [\emptyset]$.
 ▶ Enables one to use algebraic tools, provided one has a presentation of B_n.

• **Artin generators:** Every n-strand braid diagram is a (finite) concatenation of elementary diagrams with one crossing, hence of the form

$\sigma_i : \begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\begin{array}{c}
\vdots \\
\vdots \\
i+1
\vdots \\
\vdots \\
\vdots \\
\vdots \\
n
\end{array}
\end{array}$

or

$\sigma_i^{-1} : \begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\begin{array}{c}
\vdots \\
\vdots \\
i+1
\vdots \\
\vdots \\
\vdots \\
\vdots \\
n
\end{array}
\end{array}$

with $1 \leq i < n$.

• The group structure of B_n makes the Braid Isotopy Problem easier:
 ▶ Reduces to the Braid Triviality Problem: $D' \approx D \iff D^{-1} \ast D' \approx [\emptyset]$.
 ▶ Enables one to use algebraic tools, provided one has a presentation of B_n.

• Artin generators: Every n-strand braid diagram is a (finite) concatenation of elementary diagrams with one crossing, hence of the form

\[
\sigma_i : \begin{array}{c}
\vdots \\
\vdots \\
1 \quad i+1 \\
\vdots \\
\vdots
\end{array}
\quad \text{or} \quad \sigma_i^{-1} : \begin{array}{c}
\vdots \\
\vdots \\
1 \quad i+1 \\
\vdots \\
\vdots
\end{array}
\]

with $1 \leq i < n$.

• Theorem (Artin, 1926): The group B_n admits the presentation

\[\langle \sigma_1, \ldots, \sigma_{n-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{for } |i - j| \geq 2 \quad \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \quad \text{for } |i - j| = 1 \rangle.\]
• The group structure of B_n makes the Braid Isotopy Problem easier:
 ▶ Reduces to the Braid Triviality Problem: $D' \approx D \iff D^{-1} \ast D' \approx [\emptyset]$.
 ▶ Enables one to use algebraic tools, provided one has a presentation of B_n.

• **Artin** generators: Every n-strand braid diagram is a (finite) concatenation of elementary diagrams with one crossing, hence of the form

$$
\sigma_i : \begin{array}{c}
\cdots \\
\vdots \\
\vdots \\
\vdots \\
1 \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
i+1 \\
i \\
i \\
i+1
\end{array}
\quad \text{or} \quad
\sigma_i^{-1} : \begin{array}{c}
\cdots \\
\vdots \\
\vdots \\
\vdots \\
1 \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
i+1 \\
i \\
i \\
i+1
\end{array}
$$

with $1 \leq i < n$.

• **Theorem** (Artin, 1926): The group B_n admits the presentation

$$
\langle \sigma_1, \ldots, \sigma_{n-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{for } |i - j| \geq 2 \\
\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \quad \text{for } |i - j| = 1 \rangle.
$$

▶ Proof: Isotopy of piecewise linear diagrams is generated by Δ-moves. □
Plan:

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure
- 3. Dynnikov’s coordinates
- 4. Bressaud’s relaxation algorithm
• Braid Isotopy reduced to the Word Problem for B_n with respect to $\{\sigma_1, \ldots, \sigma_{n-1}\}$:
• Braid Isotopy reduced to the Word Problem for B_n with respect to \{\sigma_1, \ldots, \sigma_{n-1}\}:
 given a braid word w, decide whether w represents 1 in B_n.
• Braid Isotopy reduced to the Word Problem for B_n with respect to $\{\sigma_1, \ldots, \sigma_{n-1}\}$:

given a braid word w, decide whether w represents 1 in B_n.

 a word in the letters $\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}$.
• Braid Isotopy reduced to the Word Problem for B_n with respect to $\{\sigma_1, ..., \sigma_{n-1}\}$:

given a braid word w, decide whether w represents 1 in B_n.

 a word in the letters $\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}$.

• (Novikov, 1952) There exists a finitely presented group with an unsolvable Word Problem.
Reducing to the monoid

- Braid Isotopy reduced to the Word Problem for B_n with respect to \(\{\sigma_1, \ldots, \sigma_{n-1}\}\): given a braid word w, decide whether w represents 1 in B_n.

- (Novikov, 1952) There exists a finitely presented group with an unsolvable Word Problem.

- Here: (Garside) Use the monoid.
Reducing to the monoid

- Braid Isotopy reduced to the **Word Problem** for B_n with respect to $\{\sigma_1, \ldots, \sigma_{n-1}\}$:

 given a braid word w, decide whether w represents 1 in B_n.

 a word in the letters $\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}$.

- (Novikov, 1952) There exists a finitely presented group with an unsolvable Word Problem.

- Here: (Garside) Use the monoid.

- **Theorem** (Garside, 1969): Let B_n^+ be the monoid with presentation

 \[
 \left\langle \sigma_1, \ldots, \sigma_{n-1} \mid \begin{align*}
 \sigma_i \sigma_j &= \sigma_j \sigma_i & \text{for } |i - j| \geq 2 \\
 \sigma_i \sigma_j \sigma_i &= \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1
 \end{align*} \right\rangle^+.
 \]
• Braid Isotopy reduced to the **Word Problem** for B_n with respect to $\{\sigma_1, ..., \sigma_{n-1}\}$:
 given a braid word w, decide whether w represents 1 in B_n.

 a word in the letters $\sigma_1^{\pm 1}, ... \sigma_{n-1}^{\pm 1}$.

• (Novikov, 1952) There exists a finitely presented group with an unsolvable Word Problem.

• Here: (Garside) Use the **monoid**.

• **Theorem** (Garside, 1969): Let B_n^+ be the monoid with presentation

 $$\left\langle \sigma_1, ..., \sigma_{n-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{for} \quad |i - j| \geq 2 \right\rangle^+.$$

 Then B_n^+ embeds in B_n and B_n is a **group of fractions** for B_n^+.

 every element of B_n can be written $\beta^{-1} \gamma$ with $\beta, \gamma \in B_n^+$
Reducing to the monoid

- Braid Isotopy reduced to the **Word Problem** for B_n with respect to \{\sigma_1, \ldots, \sigma_{n-1}\}:

 given a **braid word** w, decide whether w represents 1 in B_n.

- \begin{align*}
 & \text{a word in the letters } \sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}.
\end{align*}

- (Novikov, 1952) There exists a finitely presented group with an unsolvable Word Problem.

- Here: (Garside) Use the **monoid**.

Theorem (Garside, 1969): Let B_n^+ be the monoid with presentation

\[
\langle \sigma_1, \ldots, \sigma_{n-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i - j| \geq 2 \rangle^+.
\]

Then B_n^+ embeds in B_n and B_n is a *group of fractions* for B_n^+.

\begin{itemize}
 \item every element of B_n can be written $\beta^{-1} \gamma$ with $\beta, \gamma \in B_n^+$
 \item Proof: Show that B_n^+ is cancellative and admits common multiples.
\end{itemize}
• An **effective** way of reducing from B_n to B_n^+:
• An effective way of reducing from B_n to B_n^+:

• **Lemma** (Garside): *Inductively define* Δ_n *by* $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.
• An effective way of reducing from B_n to B_n^+:

• **Lemma** (Garside): *Inductively define Δ_n by $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.*

Then, for every (signed) n-strand braid word w, one can find $p \geq 0$ and a positive n-strand braid word w' and satisfying $\Delta_n^p w \equiv w'$.
• An effective way of reducing from B_n to B_n^+:

• **Lemma** (Garside): *Inductively define* Δ_n *by* $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.

 \[
 \begin{array}{c}
 \text{\includegraphics[width=2cm]{braids.png}}
 \\
 \cong \text{\includegraphics[width=2cm]{braids2.png}}
 \end{array}

 Then, for every (signed) n-strand braid word w, one can find $p \geq 0$

 and a positive n-strand braid word w' and satisfying $\Delta_n^p w \equiv w'$.

 • Then: \(w \equiv \in \uparrow \)

 \[
 \text{the empty word}
 \]
• An effective way of reducing from B_n to B_n^+:

• **Lemma (Garside):** *Inductively define* Δ_n *by* $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.

Then, for every (signed) n-strand braid word w, one can find $p \geq 0$ and a positive n-strand braid word w' and satisfying $\Delta_n^p w \equiv w'$.

• Then: $w \equiv \varepsilon \iff w' \equiv \Delta_n^p$

 the empty word
• An effective way of reducing from B_n to B_n^+:

• **Lemma** (Garside): *Inductively define* Δ_n *by* $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.

\[
\begin{array}{c}
\text{Then, for every (signed) } n\text{-strand braid word } w, \text{ one can find } p \geq 0 \\
\text{and a positive } n\text{-strand braid word } w' \text{ and satisfying } \Delta_n^p w \equiv w'.
\end{array}
\]

• Then:
 \[
 w \equiv \varepsilon \iff w' \equiv \Delta_n^p \iff w' \equiv^+ \Delta_n^p
 \]

 \[
 \begin{array}{c}
 \text{the empty word} \quad \text{equivalence} \\
 \text{generated by braid relations} \\
 \text{and } \sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = 1
 \end{array}
 \]
An effective way of reducing from B_n to B_n^+:

Lemma (Garside): Inductively define Δ_n by $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.

Then, for every (signed) n-strand braid word w, one can find $p \geq 0$ and a positive n-strand braid word w' and satisfying $\Delta_n^p w \equiv w'$.

Then: $w \equiv \varepsilon \iff w' \equiv \Delta_n^p \iff w' \equiv^+ \Delta_n^p$

↑ the empty word equivalence equivalence

↑ generated by braid relations generated by braid relations alone

and $\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = 1$
An effective way of reducing from B_n to B_n^+:

Lemma (Garside): Inductively define Δ_n by $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.

Then, for every (signed) n-strand braid word w, one can find $p \geq 0$ and a positive n-strand braid word w' and satisfying $\Delta_n^p w \equiv w'$.

Then: $w \equiv \varepsilon \iff w' \equiv \Delta_n^p \iff w' \equiv^+ \Delta_n^p$

the empty word equivalence equivalence

generated by braid relations generated by braid relations alone

and $\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = 1$

Now: \equiv^+ is decidable, as it preserves word-length.
An effective way of reducing from B_n to B_n^+:

Lemma (Garside): *Inductively define Δ_n by $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.*

Then, for every (signed) n-strand braid word w, one can find $p \geq 0$ and a positive n-strand braid word w' and satisfying $\Delta_n^p w \equiv w'$.

Then: $w \equiv \varepsilon \iff w' \equiv \Delta_n^p \iff w' \equiv^+ \Delta_n^p$

the empty word

\[
\equiv \quad \sim \quad \equiv^+ \quad \sim
\]

equivalence

\[
\text{equivalence generated by braid relations}
\quad \text{equivalence generated by braid relations alone}
\]

and $\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = 1$

Now: \equiv^+ is decidable, as it preserves word-length.

Hence: A (theoretical) solution to the Braid Isotopy Problem: starting from w,

• An effective way of reducing from B_n to B_n^+:

• **Lemma** (Garside): *Inductively define Δ_n by $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.*

\[
\begin{align*}
\text{Then, for every (signed) } n\text{-strand braid word } w, & \text{ one can find } p \geq 0 \\
& \text{and a positive } n\text{-strand braid word } w' \text{ and satisfying } \Delta_n^p w \equiv w'.
\end{align*}
\]

• Then: $w \equiv \varepsilon \iff w' \equiv \Delta_n^p \iff w' \equiv^+ \Delta_n^p$

 the empty word \hspace{1cm} equivalence \hspace{1cm} equivalence

 generated by braid relations \hspace{1cm} generated by braid relations alone

 and $\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = 1$

• Now: \equiv^+ is decidable, as it preserves word-length.

• Hence: A (theoretical) solution to the Braid Isotopy Problem: starting from w,

 1. find p and w' positive satisfying $\Delta_n^p w \equiv w'$;
• An effective way of reducing from B_n to B_n^+:

• **Lemma** (Garside): *Inductively define Δ_n by $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$.*

\[
\begin{align*}
\Delta_1 &= 1, \\
\Delta_n &= \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1.
\end{align*}
\]

Then, for every (signed) n-strand braid word w, one can find $p \geq 0$ and a positive n-strand braid word w' and satisfying $\Delta_n^p w \equiv w'$.

• Then: $w \equiv \varepsilon \quad \Leftrightarrow \quad w' \equiv \Delta_n^p \quad \Leftrightarrow \quad w' \equiv^+ \Delta_n^p$

\[
\begin{align*}
\uparrow & \quad \text{the empty word} \quad \uparrow & \quad \text{equivalence} \quad \uparrow & \quad \text{equivalence} \\
& \quad \text{generated by braid relations} \quad & \quad \text{generated by braid relations alone} \\
& \quad \text{and } \sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = 1
\end{align*}
\]

• Now: \equiv^+ is decidable, as it preserves word-length.

• Hence: A (theoretical) solution to the Braid Isotopy Problem: starting from w,
 1. find p and w' positive satisfying $\Delta_n^p w \equiv w'$;
 2. test $w' \equiv^+ \Delta_n^p$ by systematically enumerating the \equiv^+-class of w'.
• To improve the previous solution and make it tractable:
To improve the previous solution and make it tractable:

define (efficiently computable) normal forms on B_n^+.

• To improve the previous solution and make it tractable:
 define (efficiently computable) normal forms on B_n^+.

• Every n-strand braid gives a permutation of $\{1, \ldots, n\}$:
• To improve the previous solution and make it tractable:
 define (efficiently computable) normal forms on B_n^+.

• Every n-strand braid gives a permutation of $\{1, \ldots, n\}$:
 follow the positions of the strands:
• To improve the previous solution and make it tractable:
 define (efficiently computable) normal forms on B_n^+.

• Every n-strand braid gives a permutation of $\{1, \ldots, n\}$:
 follow the positions of the strands:
• To improve the previous solution and make it tractable:
 define (efficiently computable) normal forms on B_n^+.

• Every n-strand braid gives a permutation of $\{1, \ldots, n\}$:
 follow the positions of the strands:
• To improve the previous solution and make it tractable: define (efficiently computable) normal forms on B_n^+.

• Every n-strand braid gives a permutation of $\{1, \ldots, n\}$: follow the positions of the strands:
 - short exact sequence
 \[1 \longrightarrow PB_n \longrightarrow B_n \longrightarrow \mathfrak{S}_n \longrightarrow 1. \]
To improve the previous solution and make it tractable:
- define (efficiently computable) normal forms on B_n^+.

Every n-strand braid gives a permutation of $\{1, \ldots, n\}$:
- follow the positions of the strands:
 - short exact sequence
 $1 \longrightarrow PB_n \longrightarrow B_n \longrightarrow \mathfrak{S}_n \longrightarrow 1$.

Inductively define a (set-theoretic) section
- for the projection of B_n onto \mathfrak{S}_n:
• To improve the previous solution and make it tractable:
 define (efficiently computable) normal forms on B_n^+.

• Every n-strand braid gives a permutation of $\{1, \ldots, n\}$:
 follow the positions of the strands:
 - short exact sequence
 \[
 1 \longrightarrow PB_n \longrightarrow B_n \longrightarrow \mathfrak{S}_n \longrightarrow 1.
 \]

• Inductively define a (set-theoretic) section
 for the projection of B_n onto \mathfrak{S}_n:
 for $f = (n, f(n)) \circ g$ with $g \in \mathfrak{S}_{n-1}$,
 put $\sigma_f := \sigma_{f(n)} \cdots \sigma_{n-1} \sigma_g$
• To improve the previous solution and make it tractable:
 define (efficiently computable) normal forms on B_n^+.

• Every n-strand braid gives a permutation of $\{1, \ldots, n\}$:
 follow the positions of the strands:
 \begin{itemize}
 \item short exact sequence
 \begin{align*}
 1 & \longrightarrow PB_n \longrightarrow B_n \longrightarrow \mathfrak{S}_n \longrightarrow 1.
 \end{align*}
 \end{itemize}

• Inductively define a (set-theoretic) section for the projection of B_n onto \mathfrak{S}_n:
 for $f = (n, f(n)) \circ g$ with $g \in \mathfrak{S}_{n-1}$,
 put $\sigma_f := \sigma_{f(n)} \cdots \sigma_{n-1} \sigma_g$.

\begin{itemize}
 \item \hspace{1cm} \\
\end{itemize}
To improve the previous solution and make it tractable:
define (efficiently computable) normal forms on B_n^+.

Every n-strand braid gives a permutation of $\{1, \ldots, n\}$:
follow the positions of the strands:

1. short exact sequence
 $$1 \longrightarrow PB_n \longrightarrow B_n \longrightarrow \mathfrak{S}_n \longrightarrow 1.$$

2. Inductively define a (set-theoretic) section
 for the projection of B_n onto \mathfrak{S}_n:
 for $f = (n, f(n)) \circ g$ with $g \in \mathfrak{S}_{n-1}$,
 put $\sigma_f := \sigma_{f(n)} \cdots \sigma_{n-1} \sigma_g$

 a family of $n!$ permutation braids in B_n^+.

Lemma: Permutations braids are the (left- and right-) divisors of Δ_n in B_n^+.
To improve the previous solution and make it tractable:

- define (efficiently computable) normal forms on B^+_n.

- Every n-strand braid gives a permutation of $\{1, \ldots, n\}$:
 - follow the positions of the strands:
 - short exact sequence
 $1 \rightarrow PB_n \rightarrow B_n \rightarrow \mathfrak{S}_n \rightarrow 1$.

- Inductively define a (set-theoretic) section
 for the projection of B_n onto \mathfrak{S}_n:
 for $f = (n, f(n)) \circ g$ with $g \in \mathfrak{S}_{n-1}$,
 put $\sigma_f := \sigma_{f(n)} \cdots \sigma_{n-1} \sigma_g$
 - a family of $n!$ permutation braids in B^+_n.

- Lemma: Permutations braids are the (left- and right-) divisors of Δ_n in B^+_n.
 β left-divides γ if $\exists \gamma' \ (\beta \gamma' = \gamma)$.
• **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, \(B^+_n \) is a lattice.*
• Theorem (Garside 1969): With respect to \textit{(left- and right-)} divisibility, B_n^+ is a \textit{lattice}. least common multiples and greatest common divisors exist
• **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, B^+_n is a lattice.*

 least common multiples and greatest common divisors exist

• **Corollary:** *For every positive n-strand braid β, there exists a unique maximal permutation braid left-dividing β.*
• **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, B^+_n is a lattice.*

 least common multiples and greatest common divisors exist

• **Corollary:** *For every positive n-strand braid β, there exists a unique maximal permutation braid left-dividing β.
 namely: the left-gcd of β and $\Delta_n*
• **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, B^+_n is a lattice.*

least common multiples and greatest common divisors exist

• **Corollary:** *For every positive n-strand braid β, there exists a unique maximal permutation braid left-dividing β. Namely: the left-gcd of β and Δ_n*

▶ A distinguished decomposition:
• **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, B_n^+ is a lattice.*

least common multiples and greatest common divisors exist

• **Corollary**: *For every positive n-strand braid β, there exists a unique maximal permutation braid left-dividing β.*

 namely: the left-gcd of β and Δ_n

 ▶ A distinguished decomposition:

 $\beta = \sigma_{r_1} \cdot \beta'$
The greedy normal form

Theorem (Garside 1969): With respect to (left- and right-) divisibility, B_n^+ is a lattice.

least common multiples and greatest common divisors exist

Corollary: For every positive n-strand braid β,

there exists a unique maximal permutation braid left-dividing β.

namely: the left-gcd of β and Δ_n

A distinguished decomposition:

$\beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta''$
• **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, B^+_n is a lattice.*

least common multiples and greatest common divisors exist

• **Corollary:** *For every positive n-strand braid β, there exists a unique maximal permutation braid left-dividing β. Namely: the left-gcd of β and Δ_n*

► A distinguished decomposition:

$$\beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \cdots = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \cdots \cdot \sigma_{f_r}.$$
Theorem (Garside 1969): *With respect to (left- and right-) divisibility, B_n^+ is a lattice.*

least common multiples and greatest common divisors exist

Corollary: *For every positive n-strand braid β, there exists a unique maximal permutation braid left-dividing β. Namely: the left-gcd of β and Δ_n*

- A distinguished decomposition:

 $\beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \cdots = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \cdots \cdot \sigma_{f_r}$

 “a positive braid is a sequence of permutations”
The greedy normal form

- **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, B_n^+ is a lattice.*

 least common multiples and greatest common divisors exist

- **Corollary:** *For every positive n-strand braid β, there exists a unique maximal permutation braid left-dividing β.*

 namely: the left-gcd of β and Δ_n

 ▶ A distinguished decomposition:

 $\beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \cdots = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \cdots \cdot \sigma_{f_r}$.

 "a positive braid is a sequence of permutations"

- **Fact:** σ_f is a maximal left-divisor of $\sigma_f \cdot \sigma_g$ iff every recoil of f is a descent of g.
• **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, \(B^+_n \) is a lattice.*

least common multiples and greatest common divisors exist

• **Corollary:** *For every positive n-strand braid \(\beta \), there exists a unique maximal permutation braid left-dividing \(\beta \).* namely: the left-gcd of \(\beta \) and \(\Delta_n \)

 ▶ A distinguished decomposition:

 \[
 \beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \ldots = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \ldots \cdot \sigma_{f_r}.
 \]

 “a positive braid is a sequence of permutations”

• **Fact:** *\(\sigma_f \) is a maximal left-divisor of \(\sigma_f \cdot \sigma_g \) iff every recoil of \(f \) is a descent of \(g \).*

 \[i \text{ s.t. } f(i) > f(i+1)\]
• **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, \(B_n^+ \) is a lattice.*

- least common multiples and greatest common divisors exist

• **Corollary:** *For every positive n-strand braid \(\beta \),
there exists a unique maximal permutation braid left-dividing \(\beta \).

 namely: the left-gcd of \(\beta \) and \(\Delta_n \)

 A distinguished decomposition:
 \[
 \beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \ldots = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \ldots \cdot \sigma_{f_r}.
 \]

 “a positive braid is a sequence of permutations”

• **Fact:** \(\sigma_f \) is a maximal left-divisor of \(\sigma_f \cdot \sigma_g \) iff every recoil of \(f \) is a descent of \(g \).

 \[i \text{ s.t. } f(i) > f(i+1) \text{ i s.t. } g^{-1}(i) > g^{-1}(i+1)\]
• **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, \(B_n^+ \) is a lattice.*

least common multiples and greatest common divisors exist

• **Corollary:** *For every positive \(n \)-strand braid \(\beta \), there exists a unique maximal permutation braid left-dividing \(\beta \).*

 namely: the left-gcd of \(\beta \) and \(\Delta_n \)

 A distinguished decomposition:

 \[
 \beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \cdots = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \cdots \cdot \sigma_{f_r}.
 \]

 “a positive braid is a sequence of permutations”

• **Fact:** *\(\sigma_f \) is a maximal left-divisor of \(\sigma_f \cdot \sigma_g \) iff every recoil of \(f \) is a descent of \(g \).*

 \[i \text{ s.t. } f(i) > f(i+1) \text{ i s.t. } g^{-1}(i) > g^{-1}(i+1) \]

• **Proposition** (Adjan, El-Rifai–Morton, Thurston, ... 1980s):
• **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, B_n^+ is a lattice.*

 least common multiples and greatest common divisors exist

• **Corollary:** For every positive n-strand braid β, there exists a unique maximal permutation braid left-dividing β. namely: the left-gcd of β and Δ_n

 ► A distinguished decomposition:

 $\beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \cdots = \sigma_{f_1} \cdot \sigma_{f_2} \cdots \sigma_{f_r}$. “a positive braid is a sequence of permutations”

• **Fact:** σ_f is a maximal left-divisor of $\sigma_f \cdot \sigma_g$ iff every recoil of f is a descent of g.

 i s.t. $f(i) > f(i+1)$ i s.t. $g^{-1}(i) > g^{-1}(i+1)$

• **Proposition** (Adjan, El-Rifai–Morton, Thurston, ... 1980s): *Every braid in B_n admits a unique expression $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}*$
• **Theorem** (Garside 1969): With respect to (left- and right-) divisibility, B_n^+ is a lattice.

 least common multiples and greatest common divisors exist

• **Corollary**: For every positive n-strand braid β, there exists a unique maximal permutation braid left-dividing β.

 namely: the left-gcd of β and Δ_n

 A distinguished decomposition:

 $\beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \cdots = \sigma_{f_1} \cdot \sigma_{f_2} \cdots \sigma_{f_r} \cdot \beta''$

 “a positive braid is a sequence of permutations”

• **Fact**: σ_f is a maximal left-divisor of $\sigma_f \cdot \sigma_g$ iff every recoil of f is a descent of g.

 i s.t. $f(i) > f(i+1)$ i s.t. $g^{-1}(i) > g^{-1}(i+1)$

• **Proposition** (Adjan, El-Rifai–Morton, Thurston, ... 1980s): Every braid in B_n admits a unique expression $\Delta_p^0 \sigma_{f_1} \cdots \sigma_{f_r}$ with $p \in \mathbb{Z}$,
The greedy normal form

• **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, B^+_n is a lattice.*

 least common multiples and greatest common divisors exist

• **Corollary:** *For every positive n-strand braid β, there exists a unique maximal permutation braid left-dividing β.*

 namely: the left-gcd of β and Δ_n

 ▶ A distinguished decomposition:

 $\beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \cdots = \sigma_{f_1} \cdot \sigma_{f_2} \cdots \sigma_{f_r}$.

 “a positive braid is a sequence of permutations”

• **Fact:** σ_f is a maximal left-divisor of $\sigma_f \cdot \sigma_g$ iff every recoil of f is a descent of g.

 i s.t. $f(i) > f(i+1)$ i s.t. $g^{-1}(i) > g^{-1}(i+1)$

• **Proposition** (Adjan, El-Rifai–Morton, Thurston, ... 1980s): *Every braid in B_n admits a unique expression $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$ with $p \in \mathbb{Z}$, $f_1 \neq (n, \ldots, 2, 1)$, ...
The greedy normal form

- **Theorem** (Garside 1969): *With respect to (left- and right-) divisibility, B_n^+ is a lattice.*

 least common multiples and greatest common divisors exist

- **Corollary:** *For every positive n-strand braid β, there exists a unique maximal permutation braid left-dividing β. Namely: the left-gcd of β and Δ_n*

 A distinguished decomposition:

 $\beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \cdots = \sigma_{f_1} \cdot \sigma_{f_2} \cdots \sigma_{f_r}$.

 "a positive braid is a sequence of permutations"

- **Fact:** *σ_f is a maximal left-divisor of $\sigma_f \cdot \sigma_g$ iff every recoil of f is a descent of g.*

 i s.t. $f(i) > f(i+1)$ i s.t. $g^{-1}(i) > g^{-1}(i+1)$

- **Proposition** (Adjan, El-Rifai–Morton, Thurston, ... 1980s): *Every braid in B_n admits a unique expression $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$ with $p \in \mathbb{Z}$, $f_1 \neq (n, \ldots, 2, 1)$, $f_r \neq id$,
The greedy normal form

- **Theorem** (Garside 1969): With respect to (left- and right-) divisibility, B^+_n is a **lattice**.

 least common multiples and greatest common divisors exist

- **Corollary**: For every positive n-strand braid β, there exists a **unique maximal** permutation braid left-dividing β.

 namely: the left-gcd of β and Δ_n

 ▶ A distinguished decomposition:

 $\beta = \sigma_{f_1} \cdot \beta' = \sigma_{f_1} \cdot \sigma_{f_2} \cdot \beta'' = \cdots = \sigma_{f_1} \cdot \sigma_{f_2} \cdots \sigma_{f_r}$.

 “a positive braid is a sequence of permutations”

- **Fact**: σ_f is a maximal left-divisor of $\sigma_f \cdot \sigma_g$ iff every recoil of f is a **descent** of g.

 i s.t. $f(i) > f(i+1) \quad i$ s.t. $g^{-1}(i) > g^{-1}(i+1)$

- **Proposition** (Adjan, El-Rifai–Morton, Thurston, ... 1980s): Every braid in B_n admits a unique expression $\Delta^p_n \sigma_{f_1} \cdots \sigma_{f_r}$ with $p \in \mathbb{Z}$, $f_1 \neq (n, \ldots, 2, 1)$, $f_r \neq \text{id}$, and every recoil of f_{k+1} is a descent of f_k.
• The point here: not only theoretical, but also tractable.
• The point here: not only theoretical, but also tractable.
 ► The greedy normal form can be computed efficiently.
• The point here: not only theoretical, but also tractable.
 ▶ The greedy normal form can be computed efficiently.
 ▶ Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.
• The point here: not only theoretical, but also tractable.
 ▶ The greedy normal form can be computed efficiently.
 ▶ Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

• Recipe:
 ▶ Assume that the normal form of β is $\Delta^p_n \sigma_{f_1} \cdots \sigma_{f_r}$;
• The point here: not only theoretical, but also tractable.
 ▶ The greedy normal form can be computed efficiently.
 ▶ Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

• Recipe:
 ▶ Assume that the normal form of β is $\Delta_n^P \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;
The point here: not only theoretical, but also tractable.

- The greedy normal form can be computed efficiently.
- Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

Recipe:
- Assume that the normal form of β is $\Delta^p_n \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;
• The point here: not only theoretical, but also tractable.
 - The greedy normal form can be computed efficiently.
 - Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

• Recipe:
 - Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

\[
\begin{array}{c}
\Delta_n^p \\
\sigma_{f_1}
\end{array}
\]
The greedy normal form (cont’d)

• The point here: not only theoretical, but also tractable.
 ► The greedy normal form can be computed efficiently.
 ► Key point: computing the normal form of $\sigma_i\beta$ and $\sigma_i^{-1}\beta$ from that of β.

• Recipe:
 ► Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

\[\Delta_n^p \rightarrow \sigma_{f_1} \rightarrow \sigma_{f_2} \]
The greedy normal form (cont’d)

- The point here: not only theoretical, but also tractable.
 - The greedy normal form can be computed efficiently.
 - Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

- Recipe:
 - Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

\[
\begin{align*}
\Delta_n^p & \rightarrow \sigma_{f_1} \rightarrow \sigma_{f_2} \rightarrow \cdots \rightarrow \sigma_{f_\ell}
\end{align*}
\]
The greedy normal form (cont’d)

- The point here: not only theoretical, but also tractable.
 - The greedy normal form can be computed efficiently.
 - Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

- Recipe:
 - Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid.
The greedy normal form (cont’d)

- The point here: not only theoretical, but also tractable.
 - The greedy normal form can be computed efficiently.
 - Key point: computing the normal form of $\sigma_i\beta$ and $\sigma_i^{-1}\beta$ from that of β.

- Recipe:
 - Assume that the normal form of β is $\Delta_n^p\sigma_{f_1}\cdots\sigma_{f_r}$; let σ_g be a permutation-braid;
The greedy normal form (cont’d)

• The point here: not only theoretical, but also tractable.
 ► The greedy normal form can be computed efficiently.
 ► Key point: computing the normal form of \(\sigma_i \beta \) and \(\sigma_i^{-1} \beta \) from that of \(\beta \).

• Recipe:
 ► Assume that the normal form of \(\beta \) is \(\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r} \); let \(\sigma_g \) be a permutation-braid;
• The point here: not only theoretical, but also tractable.
 ▶ The greedy normal form can be computed efficiently.
 ▶ Key point: computing the normal form of $\sigma_i\beta$ and $\sigma_i^{-1}\beta$ from that of β.

• Recipe:
 ▶ Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;
• The point here: not only theoretical, but also tractable.
 ► The greedy normal form can be computed efficiently.
 ► Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

• Recipe:
 ► Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;
• The point here: not only theoretical, but also tractable.
 ▶ The greedy normal form can be computed efficiently.
 ▶ Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

• Recipe:
 ▶ Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;
• The point here: not only theoretical, but also tractable.
 ▶ The greedy normal form can be computed efficiently.
 ▶ Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

• Recipe:
 ▶ Assume that the normal form of β is $\Delta^p_n \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;
The point here: not only theoretical, but also tractable.
 ► The greedy normal form can be computed efficiently.
 ► Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

Recipe:
 ► Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

\[\Delta_n^p \xrightarrow{\sigma_{g_0}} \sigma_g \xrightarrow{\sigma_{g_1}} \sigma_g \xrightarrow{\sigma_{g_2}} \cdots \xrightarrow{\sigma_{g_{r-1}}} \sigma_{g_r} \]

 ► The normal form of $\sigma_g \beta$ is $\Delta_n^p \sigma_{f_1'} \cdots \sigma_{f_p'} \sigma_{g_p}$ if $\sigma_{f_1'} \neq \Delta_n$.

The point here: not only theoretical, but also tractable.
- The greedy normal form can be computed efficiently.
- Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

Recipe:
- Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

\[
\begin{align*}
\sigma_g & \quad \rightarrow \quad \sigma_{g_0} \\
\Delta_n^p & \quad \rightarrow \quad \sigma_{f_1} \\
\sigma_{g_0} & \quad \rightarrow \quad \sigma_{g_1} \\
\sigma_{f_1} & \quad \rightarrow \quad \sigma_{f_2} \\
\sigma_{g_1} & \quad \rightarrow \quad \sigma_{g_2} \\
\ldots & \quad \rightarrow \quad \ldots \\
\sigma_{g_{r-1}} & \quad \rightarrow \quad \sigma_{g_r} \\
\sigma_{f_r} & \quad \rightarrow \quad \Delta_n^{p+1} \sigma_{f_1} \cdots \sigma_{f_p} \sigma_{g_p}
\end{align*}
\]

- The normal form of $\sigma_g \beta$ is $\Delta_n^p \sigma_{f_1}' \cdots \sigma_{f_p}' \sigma_{g_p}$ if $\sigma_{f_1}' \neq \Delta_n$,
 and $\Delta_n^{p+1} \sigma_{f_1}' \cdots \sigma_{f_p}' \sigma_{g_p}$ otherwise.
The greedy normal form (cont’d)

• The point here: not only theoretical, but also tractable.
 ▶ The greedy normal form can be computed efficiently.
 ▶ Key point: computing the normal form of $\sigma_i\beta$ and $\sigma_i^{-1}\beta$ from that of β.

• Recipe:
 ▶ Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

\[
\begin{align*}
\Delta_n^p & \quad \Delta_n^p \\
\sigma_g & \quad \sigma_{\phi_n^p(g)} & \quad \sigma_{f_1} & \quad \sigma_{f_2} & \quad \cdots & \quad \sigma_{f_r} & \quad \sigma_{g_{r-1}} & \quad \sigma_{g_r} \\
& \quad \sigma_{g_0} & \quad \sigma_{g_1} & \quad \sigma_{g_2} \\
\end{align*}
\]

▶ The normal form of $\sigma_g\beta$ is $\Delta_n^p \sigma_{f_1'} \cdots \sigma_{f_p'} \sigma_{g_p}$ if $\sigma_{f_1'} \neq \Delta_n$, and $\Delta_n^{p+1} \sigma_{f_2'} \cdots \sigma_{f_p'} \sigma_{g_p}$ otherwise.

▶ And the normal form of $\sigma_g^{-1}\beta$?
• The point here: not only theoretical, but also tractable.
 ▶ The greedy normal form can be computed efficiently.
 ▶ Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

• Recipe:
 ▶ Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

 $\Delta_n^p \sigma_g \xrightarrow{\phi_n(g)} \Delta_n^p \sigma_{f_1} \xrightarrow{\sigma_{f_1}} \Delta_n^p \sigma_{g_0} \xrightarrow{\sigma_{f_1}} \Delta_n^p \sigma_{f_2} \xrightarrow{\sigma_{f_2}} \cdots \xrightarrow{\sigma_{f_r}} \Delta_n^p \sigma_{g_r}$

 ▶ The normal form of $\sigma_g \beta$ is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_p} \sigma_g \sigma_{g_0}$ if $\sigma_{f_1} \neq \Delta_n$,
 and $\Delta_n^{p+1} \sigma_{f_1} \cdots \sigma_{f_p} \sigma_g \sigma_{g_0}$ otherwise.

 ▶ And the normal form of $\sigma_g^{-1} \beta$? There exists g' satisfying $\sigma_g \sigma_{g'} = \Delta_n$.

The greedy normal form (cont’d)
• The point here: not only theoretical, but also tractable.
 ▶ The greedy normal form can be computed efficiently.
 ▶ Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

• Recipe:
 ▶ Assume that the normal form of β is $\Delta_n^p \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

 $\Delta_n^p \xrightarrow{\Delta_n^p} \sigma_{f_1} \xrightarrow{\sigma_{f_1}'} \sigma_{f_2} \xrightarrow{\sigma_{f_2}'} \cdots \xrightarrow{\sigma_{f_r}'} \sigma_{g_r}$

 ▶ The normal form of $\sigma_g \beta$ is $\Delta_n^p \sigma_{f_1}' \cdots \sigma_{f_p}' \sigma_{g_p}$ if $\sigma_{f_1}' \neq \Delta_n$, and $\Delta_n^{p+1} \sigma_{f_2}' \cdots \sigma_{f_p}' \sigma_{g_p}$ otherwise.

 ▶ And the normal form of $\sigma_g^{-1} \beta$? There exists g' satisfying $\sigma_g \sigma_{g'} = \Delta_n$, hence $\sigma_g^{-1} = \sigma_{g'} \Delta_n^{-1}$,
The point here: not only theoretical, but also tractable.
 ▶ The greedy normal form can be computed efficiently.
 ▶ Key point: computing the normal form of $\sigma_i \beta$ and $\sigma_i^{-1} \beta$ from that of β.

Recipe:
 ▶ Assume that the normal form of β is $\Delta^p_n \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

 $\begin{array}{c}
 \Delta^p_n \\
 \sigma_g \\
 \phi^p_n(g) \\
 \Delta^p_n \\
 \sigma_g \sigma_{f_1} \\
 \sigma_{f_1}' \\
 \sigma_{f_2} \\
 \sigma_{f_2}' \\
 \sigma_{f_r} \\
 \sigma_{f_r}' \\
 \sigma_g \sigma_{g_1} \\
 \sigma_g \sigma_{g_2} \\
 \sigma_g \sigma_{g_{r-1}} \\
 \sigma_g \sigma_{g_r}
 \end{array}$

 ▶ The normal form of $\sigma_g \beta$ is $\Delta^p_n \sigma_{f_1}' \cdots \sigma_{f_p}' \sigma_{g_p}$ if $\sigma_{f_1}' \neq \Delta_n$,
and $\Delta^{p+1}_n \sigma_{f_2}' \cdots \sigma_{f_p}' \sigma_{g_p}$ otherwise.

 ▶ And the normal form of $\sigma_g^{-1} \beta$? There exists g' satisfying $\sigma_g \sigma_{g'} = \Delta_n$,
hence $\sigma_g^{-1} = \sigma_{g'} \Delta_n^{-1}$, and $\sigma_g^{-1} \beta = \sigma_{g'} \Delta_n^{p-1} \sigma_{f_1} \cdots \sigma_{f_r}$:
• The point here: not only theoretical, but also tractable.
 ▶ The greedy normal form can be computed efficiently.
 ▶ Key point: computing the normal form of $\sigma_i\beta$ and $\sigma_i^{-1}\beta$ from that of β.

• Recipe:
 ▶ Assume that the normal form of β is $\Delta_p^n \sigma_{f_1} \cdots \sigma_{f_r}$; let σ_g be a permutation-braid;

\[
\begin{array}{ccccccc}
\sigma_g & \xrightarrow{\Delta_p^n} & \sigma_{\phi_p^n(g)} & \xrightarrow{\sigma_{f_1}'} & \sigma_{g_0} & \xrightarrow{\sigma_{f_2}'} & \sigma_{g_1} & \xrightarrow{\sigma_{g_2}} & \cdots & \cdots & \sigma_{g_{r-1}} & \xrightarrow{\sigma_{f_r}'} & \sigma_{g_r} \\
\sigma_g & \xrightarrow{\Delta_p^n} & \sigma_{f_1} & \sigma_{f_2} & \cdots & \cdots & \sigma_{f_{r-1}} & \sigma_{f_r} & \cdots & \cdots & \sigma_{f_{r-1}} & \sigma_{g_{r-1}} & \sigma_{g_r} \\
\end{array}
\]

▶ The normal form of $\sigma_g\beta$ is $\Delta_p^n \sigma_{f_1}' \cdots \sigma_{f_p}' \sigma_{g_p}$ if $\sigma_{f_1}' \neq \Delta_n$, and $\Delta_p^{n+1} \sigma_{f_2}' \cdots \sigma_{f_p}' \sigma_{g_p}$ otherwise.

▶ And the normal form of $\sigma_g^{-1}\beta$? There exists g' satisfying $\sigma_g \sigma_{g'} = \Delta_n$, hence $\sigma_g^{-1} = \sigma_{g'} \Delta_n^{-1}$, and $\sigma_g^{-1} \beta = \sigma_{g'} \Delta_n^{p-1} \sigma_{f_1} \cdots \sigma_{f_r}$: continue as above.
• This corresponds to an automatic structure for B_n (Thurston, Cannon),
• This corresponds to an automatic structure for B_n (Thurston, Cannon), and, more specifically, to a Garside structure (D.–Paris 1997):
• This corresponds to an **automatic structure** for B_n (Thurston, Cannon),
 ▶ and, more specifically, to a **Garside structure** (D.–Paris 1997):

 a submonoid B_n^+ of B_n.

• This corresponds to an automatic structure for B_n (Thurston, Cannon),
 ▶ and, more specifically, to a Garside structure (D.–Paris 1997):

 a submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
• This corresponds to an **automatic structure** for B_n (Thurston, Cannon),
 - and, more specifically, to a **Garside structure** (D.–Paris 1997):
 - a submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
This corresponds to an automatic structure for B_n (Thurston, Cannon), and, more specifically, to a Garside structure (D.-Paris 1997):

- A submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$,
• This corresponds to an **automatic structure** for B_n (Thurston, Cannon),
 - and, more specifically, to a **Garside structure** (D.–Paris 1997):
 - a submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+,
• This corresponds to an **automatic structure** for B_n (Thurston, Cannon),
 - and, more specifically, to a **Garside structure** (D.–Paris 1997):
 - a submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+, and $\#\text{Div}(\Delta_n) < \infty$.

• This corresponds to an automatic structure for B_n (Thurston, Cannon),
 ► and, more specifically, to a Garside structure (D.–Paris 1997):
 a submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+, and $\#\text{Div}(\Delta_n) < \infty$.
 ► Is the Garside structure on B_n unique? Is there another Garside structure on B_n?
This corresponds to an automatic structure for B_n (Thurston, Cannon),
and, more specifically, to a Garside structure (D.–Paris 1997):

- A submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+, and $\#\text{Div}(\Delta_n) < \infty$.

Is the Garside structure on B_n unique? Is there another Garside structure on B_n?

The dual Garside structure on B_n,

Garside structures on B_n
This corresponds to an automatic structure for B_n (Thurston, Cannon), and, more specifically, to a Garside structure (D.–Paris 1997):

- A submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+, and $\#\text{Div}(\Delta_n) < \infty$.

Is the Garside structure on B_n unique? Is there another Garside structure on B_n?

The dual Garside structure on B_n, based on the Birman–Ko–Lee generators:
• This corresponds to an **automatic structure** for B_n (Thurston, Cannon),
 - and, more specifically, to a **Garside structure** (D.–Paris 1997):

 a submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+, and $\#\text{Div}(\Delta_n) < \infty$.
 - Is the Garside structure on B_n unique? Is there another Garside structure on B_n?

• The **dual** Garside structure on B_n, based on the **Birman–Ko–Lee** generators:

 for $1 \leq i < j \leq n$: \[a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}. \]
• This corresponds to an **automatic structure** for B_n (Thurston, Cannon),
 - and, more specifically, to a **Garside structure** (D.–Paris 1997):

 ![Diagram of a submonoid B^+_n of B_n, plus an element Δ_n of B^+_n such that B_n is a group of fractions for B^+_n, B^+_n equipped with the (left) divisibility relation is a lattice, $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B^+_n, and $\#\text{Div}(\Delta_n) < \infty$.]

 - Is the Garside structure on B_n unique? Is there another Garside structure on B_n?

• The **dual** Garside structure on B_n, based on the Birman–Ko–Lee generators:
 - for $1 \leq i < j \leq n$: $a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}$.

• This corresponds to an automatic structure for B_n (Thurston, Cannon),
 - and, more specifically, to a Garside structure (D.–Paris 1997):
 - a submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+, and $\#\text{Div}(\Delta_n) < \infty$.

 Is the Garside structure on B_n unique? Is there another Garside structure on B_n?

• The dual Garside structure on B_n, based on the Birman–Ko–Lee generators:
 - for $1 \leq i < j \leq n$: $a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}$.
• This corresponds to an **automatic structure** for B_n (Thurston, Cannon),
 - and, more specifically, to a **Garside structure** (D.–Paris 1997):
 - a submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+, and $\#\text{Div}(\Delta_n) < \infty$.
 - Is the Garside structure on B_n unique? Is there another Garside structure on B_n?

• The **dual** Garside structure on B_n, based on the Birman–Ko–Lee generators:
 - for $1 \leq i < j \leq n$: $a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}$.

• **Definition** (Birman–Ko–Lee 1997): $B_n^{**} :=$ submonoid of B_n generated by the $a_{i,j}$s.
• This corresponds to an automatic structure for B_n (Thurston, Cannon),
 and, more specifically, to a Garside structure (D.–Paris 1997):
 - a submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+, and $\#\text{Div}(\Delta_n) < \infty$.

• Is the Garside structure on B_n unique? Is there another Garside structure on B_n?

• The dual Garside structure on B_n, based on the Birman–Ko–Lee generators:
 for $1 \leq i < j \leq n$: $a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}$.

• Definition (Birman–Ko–Lee 1997): $B_n^{**} := \text{submonoid of } B_n \text{ generated by the } a_{i,j}$s.
 $\Delta_n^* := a_{1,2} a_{2,3} \cdots a_{n-1,n}$
• This corresponds to an **automatic structure** for B_n (Thurston, Cannon),
 - and, more specifically, to a **Garside structure** (D.-Paris 1997):
 - a submonoid B_n^+ of B_n, plus an element Δ_n of B_n^+ such that
 - B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+, and $\#\text{Div}(\Delta_n) < \infty$.
 - Is the Garside structure on B_n unique? Is there another Garside structure on B_n?

• The **dual** Garside structure on B_n, based on the Birman–Ko–Lee generators:
 - for $1 \leq i < j \leq n$: $a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}$.

![Diagram](image)

• **Definition** (Birman–Ko–Lee 1997): $B_n^{++} :=$ submonoid of B_n generated by the $a_{i,j}$s.
 $\Delta_n^* := a_{1,2} a_{2,3} \cdots a_{n-1,n} (= \sigma_1 \sigma_2 \cdots \sigma_{n-1})$.
This corresponds to an automatic structure for B_n (Thurston, Cannon), and, more specifically, to a Garside structure (D.–Paris 1997):

- B_n is a group of fractions for B_n^+,
- B_n^+ equipped with the (left) divisibility relation is a lattice,
- $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+, and $\#\text{Div}(\Delta_n) < \infty$.

Is the Garside structure on B_n unique? Is there another Garside structure on B_n?

The dual Garside structure on B_n, based on the Birman–Ko–Lee generators:

for $1 \leq i < j \leq n$: $a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}$.

Definition (Birman–Ko–Lee 1997): $B_n^{++} :=$ submonoid of B_n generated by the $a_{i,j}$s.

$\Delta_n^* := a_{1,2}a_{2,3} \cdots a_{n-1,n} (= \sigma_1 \sigma_2 \cdots \sigma_{n-1})$.

Proposition: (B_n^{++}, Δ_n^*) is a Garside structure on B_n.
• This corresponds to an **automatic structure** for B_n (Thurston, Cannon),
 - and, more specifically, to a **Garside structure** (D.–Paris 1997):

 B_n is a group of fractions for B_n^+,
 - B_n^+ equipped with the (left) divisibility relation is a lattice,
 - $\text{Div}_{\text{left}}(\Delta_n) = \text{Div}_{\text{right}}(\Delta_n)$, $\text{Div}(\Delta_n)$ generates B_n^+, and $\#\text{Div}(\Delta_n) < \infty$.

 ▶️ Is the Garside structure on B_n unique? Is there another Garside structure on B_n?

• The **dual** Garside structure on B_n, based on the Birman–Ko–Lee generators:

 for $1 \leq i < j \leq n$: $a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}$.

 ![Diagram](image)

 ![Diagram](image)

 ▶️ **Definition** (Birman–Ko–Lee 1997): $B_n^{++} := \text{submonoid of } B_n \text{ generated by the } a_{i,j} \text{s}.$
 $\Delta_n^* := a_{1,2} a_{2,3} \cdots a_{n-1,n} (= \sigma_1 \sigma_2 \cdots \sigma_{n-1})$.

 ▶️ **Proposition**: (B_n^{++}, Δ_n^*) is a **Garside structure** on B_n.
 - a new solution of the Word Problem.
Chord representation of the Birman–Ko–Lee generators:
- Chord representation of the Birman–Ko–Lee generators: $a_{i,j} \mapsto$
• Chord representation of the Birman–Ko–Lee generators: $a_{i,j} \mapsto$

• Lemma: In terms of the BKL generators, B_n is presented by the relations
• Chord representation of the Birman–Ko–Lee generators: \[a_{i,j} \mapsto \]

• **Lemma:** *In terms of the BKL generators, \(B_n \) is presented by the relations*

\[
\begin{array}{c}
\begin{array}{ccc}
\circ & \circ & \circ \\
\hline
\circ & \circ & \circ \\
\end{array} \\
\begin{array}{ccc}
\circ & \circ & \circ \\
\hline
\circ & \circ & \circ \\
\end{array} \\
\begin{array}{ccc}
\circ & \circ & \circ \\
\hline
\circ & \circ & \circ \\
\end{array}
\end{array}
\]

\[= \]

\[
\begin{array}{c}
\begin{array}{ccc}
\circ & \circ & \circ \\
\hline
\circ & \circ & \circ \\
\end{array} \\
\begin{array}{ccc}
\circ & \circ & \circ \\
\hline
\circ & \circ & \circ \\
\end{array} \\
\begin{array}{ccc}
\circ & \circ & \circ \\
\hline
\circ & \circ & \circ \\
\end{array}
\end{array}
\]

\[\text{for disjoint chords,} \]
• Chord representation of the Birman–Ko–Lee generators: $a_{i,j} \mapsto$.

• **Lemma:** *In terms of the BKL generators, B_n is presented by the relations for disjoint chords,*

\[
\begin{align*}
\text{Diagram 1} & \cdot \text{Diagram 2} = \text{Diagram 3} \cdot \text{Diagram 4}
\end{align*}
\]
- Chord representation of the Birman–Ko–Lee generators: $a_{ij} \mapsto \begin{array}{c}
1 \\
j \\
i
\end{array}$

- **Lemma**: In terms of the BKL generators, B_n is presented by the relations

\[
\begin{array}{c}
1 \\
j \\
i
\end{array} \cdot \begin{array}{c}
1 \\
j \\
i
\end{array} = \begin{array}{c}
1 \\
j \\
i
\end{array} \cdot \begin{array}{c}
1 \\
j \\
i
\end{array}
\]

\[
\begin{array}{c}
1 \\
j \\
i
\end{array} \cdot \begin{array}{c}
1 \\
j \\
i
\end{array} = \begin{array}{c}
1 \\
j \\
i
\end{array} \cdot \begin{array}{c}
1 \\
j \\
i
\end{array}
\]

for disjoint chords,
• Chord representation of the Birman–Ko–Lee generators: \(a_{i,j} \mapsto \)

• **Lemma:** *In terms of the BKL generators, \(B_n \) is presented by the relations*

\[
\begin{align*}
\text{for disjoint chords,} & \\
\text{for adjacent chords enumerated in clockwise order.}
\end{align*}
\]
• Chord representation of the Birman–Ko–Lee generators: \(a_{i,j} \mapsto \)

• Lemma: In terms of the BKL generators, \(B_n \) is presented by the relations

\[
\begin{align*}
\text{for disjoint chords}, \\
\text{for adjacent chords enumerated in clockwise order.}
\end{align*}
\]

Hence: For \(P \) a \(p \)-gon, can define \(a_P \) to be the product of the \(a_{i,j} \) corresponding to \(p-1 \) adjacent edges of \(P \) in clockwise order;
• Chord representation of the Birman–Ko–Lee generators: \(a_{i,j} \)

• Lemma: In terms of the BKL generators, \(B_n \) is presented by the relations

\[
\begin{align*}
\text{for disjoint chords,} \\
\text{for adjacent chords enumerated in clockwise order.}
\end{align*}
\]

Hence: For \(P \) a \(p \)-gon, can define \(a_P \) to be the product of the \(a_{i,j} \) corresponding to \(p-1 \) adjacent edges of \(P \) in clockwise order; idem for an union of disjoint polygons.
• Chord representation of the Birman–Ko–Lee generators: \(a_{i,j} \mapsto \)

• **Lemma:** In terms of the BKL generators, \(B_n \) is presented by the relations

\[
\begin{align*}
\cdot &= \cdot \quad \text{for disjoint chords,} \\
\cdot &= \cdot = \cdot \quad \text{for adjacent chords enumerated in clockwise order.}
\end{align*}
\]

Hence: For \(P \) a \(p \)-gon, can define \(a_P \) to be the product of the \(a_{i,j} \) corresponding to \(p-1 \) adjacent edges of \(P \) in clockwise order; *idem* for an union of disjoint polygons.

• **Proposition** (Digne–Michel 2002): The divisors of \(\Delta_n^* \) in \(B_n^{++} \) are the \(\frac{1}{n+1} \binom{2n}{n} \) elements \(a_P \) for \(P \) a non-intersecting union of polygons in an \(n \)-punctured circle.
Chords

- Chord representation of the Birman–Ko–Lee generators: \(a_{i,j} \rightarrow \)

- **Lemma:** In terms of the BKL generators, \(B_n \) is presented by the relations
 - for disjoint chords,
 - for adjacent chords enumerated in clockwise order.

 Hence: For \(P \) a \(p \)-gon, can define \(a_P \) to be the product of the \(a_{i,j} \) corresponding to \(p-1 \) adjacent edges of \(P \) in clockwise order; \(\text{idem} \) for an union of disjoint polygons.

- **Proposition** (Digne–Michel 2002): The divisors of \(\Delta_n^* \) in \(B_n^{++} \) are the \(\frac{1}{n+1} \binom{2n}{n} \) elements \(a_P \) for \(P \) a non-intersecting union of polygons in an \(n \)-punctured circle.

 equivalently: a non-crossing partition of \(\{1, \ldots, n\} \)
Plan:

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure
- 3. Dynnikov’s coordinates
- 4. Bressaud’s relaxation algorithm
• An n-strand braid diagram = a danse of n points in a disk:
• An n-strand braid diagram = a danse of n points in a disk:
• An n-strand braid diagram = a danse of n points in a disk:
- An n-strand braid diagram = a danse of n points in a disk:
An n-strand braid diagram = a danse of n points in a disk:
• An \(n \)-strand braid diagram = a danse of \(n \) points in a disk:
An n-strand braid diagram = a danse of n points in a disk:
• An n-strand braid diagram = a danse of n points in a disk:
• An n-strand braid diagram = a danse of n points in a disk:
• An n-strand braid diagram = a danse of n points in a disk:
An n-strand braid diagram = a danse of n points in a disk:

... an isotopy class of homeomorphisms of D_n leaving ∂D_n fixed
• An n-strand braid diagram = a danse of n points in a disk:

... ➤ an isotopy class of homeomorphisms of D_n leaving ∂D_n fixed
disk with n marked points
• An n-strand braid diagram = a danse of n points in a disk:

... ► an isotopy class of homeomorphisms of D_n leaving ∂D_n fixed

disk with n marked points boundary of D_n
• An n-strand braid diagram = a danse of n points in a disk:

... \uparrow an isotopy class of homeomorphisms of D_n leaving ∂D_n fixed

disk with n marked points \uparrow boundary of D_n

• **Proposition:** The group B_n is (isomorphic to) the mapping class group of D_n.
• Viewing B_n as a group of *(isotopy classes of)* homeomorphisms of D_n:
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 ► action of B_n on the fundamental group of D_n,
• Viewing \(B_n \) as a group of (isotopy classes of) homeomorphisms of \(D_n \):

 - action of \(B_n \) on the fundamental group of \(D_n \), a free group of rank \(n \).
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 ► action of B_n on the fundamental group of D_n, a free group of rank n.

\[\begin{align*}
 & D_3 \\
 & \bullet \\
 & \ast \\
 & x_1
\end{align*} \]
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 ▶ action of B_n on the fundamental group of D_n, a free group of rank n.

![Diagram of D_3 with points x_1, x_2, and a star (*) indicating action.]
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 - action of B_n on the fundamental group of D_n, a free group of rank n.

![Diagram of D_3 with points labeled x_1, x_2, and x_3]
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 ▶ action of B_n on the fundamental group of D_n, a free group of rank n.

![Diagram of D_3 with points x_1, x_2, x_3, and σ_1]
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 ▶ action of B_n on the fundamental group of D_n, a free group of rank n.

![Diagram of D_3 and action of B_n]
The Artin representation

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 - action of B_n on the fundamental group of D_n, a free group of rank n.
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 ▶ action of B_n on the fundamental group of D_n, a free group of rank n.
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 ▶ action of B_n on the fundamental group of D_n, a free group of rank n.
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 ◮ action of B_n on the fundamental group of D_n, a free group of rank n.

• From there: a homomorphism ρ from B_n to $\text{Aut}(F_n)$:
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 - action of B_n on the fundamental group of D_n, a free group of rank n.

- From there: a homomorphism ρ from B_n to $\text{Aut}(F_n)$:
 \[
 \rho(\sigma_i) : \begin{cases}
 x_i \mapsto x_i x_{i+1} x_i^{-1},
 \end{cases}
 \]
The Artin representation

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 - action of B_n on the fundamental group of D_n, a free group of rank n.

- From there: a homomorphism ρ from B_n to $\text{Aut}(F_n)$:
 \[
 \rho(\sigma_i) : \begin{cases}
 x_i \mapsto x_i x_{i+1} x_i^{-1}, \\
 x_{i+1} \mapsto x_i,
 \end{cases}
 \]
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 - action of B_n on the fundamental group of D_n, a free group of rank n.

 ![Diagram showing action of B_n on D_3]

• From there: a homomorphism ρ from B_n to $\text{Aut}(F_n)$:

 $$
 \rho(\sigma_i) : \left\{ \begin{array}{ll}
 x_i & \mapsto x_i x_{i+1} x_i^{-1}, \\
 x_{i+1} & \mapsto x_i, \\
 x_k & \mapsto x_k \text{ for } k \neq i, i + 1.
 \end{array} \right.
 $$
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 - action of B_n on the fundamental group of D_n, a free group of rank n.

$$
\bullet \quad \sigma_1
$$

• From there: a homomorphism ρ from B_n to $\text{Aut}(F_n)$:
 \[
 \rho(\sigma_i) : \begin{cases}
 x_i &\mapsto x_i x_{i+1} x_i^{-1}, \\
 x_{i+1} &\mapsto x_i, \\
 x_k &\mapsto x_k \text{ for } k \neq i, i + 1.
 \end{cases}
 \]

• **Theorem (Artin):** The homomorphism ρ is injective.
• Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 ▶ action of B_n on the fundamental group of D_n, a free group of rank n.

• From there: a homomorphism ρ from B_n to $\text{Aut}(F_n)$:
 \[
 \rho(\sigma_i) : \begin{cases}
 x_i &\mapsto x_ix_{i+1}x_i^{-1}, \\
 x_{i+1} &\mapsto x_i, \\
 x_k &\mapsto x_k \text{ for } k \neq i, i + 1.
 \end{cases}
 \]

• **Theorem (Artin):** The homomorphism ρ is injective.

 ▶ a new solution of the Word Problem for B_n (hence of the Braid Isotopy Problem):
The Artin representation

- Viewing B_n as a group of (isotopy classes of) homeomorphisms of D_n:
 - action of B_n on the fundamental group of D_n, a free group of rank n.

- From there: a homomorphism ρ from B_n to $\text{Aut}(F_n)$:

 \[
 \begin{align*}
 \rho(\sigma_i) : & \quad
 \begin{cases}
 x_i \mapsto x_i x_{i+1} x_i^{-1}, \\
 x_{i+1} \mapsto x_i, \\
 x_k \mapsto x_k \text{ for } k \neq i, i+1.
 \end{cases}
 \end{align*}
 \]

- **Theorem** (Artin): *The homomorphism ρ is injective.*

 - a new solution of the Word Problem for B_n (hence of the Braid Isotopy Problem):
 a braid word w represents 1 in B_n iff $\rho(w)(x_k) = x_k$ holds for $k = 1, \ldots, n$.
• For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$,
For $x \in \mathbb{Z}$, put $x^+ = \max(0, x), \ x^- = \min(x, 0)$, and

$$F^+(x_1, y_1, x_2, y_2) =$$
• For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and

$$F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1^+), y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1)^-, y_1 + z_1^+),$$
For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and
\[
F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+, (y_2^+ - z_1)^+, y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1)^-, y_1 + z_1^+),
\]
\[
F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2)^+, y_2 + z_2^-, x_2 - y_2^- - (y_1^- - z_1)^-, y_1 - z_2^-),
\]
\[
F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+, (y_2^+ - z_1)^+, y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1)^-, y_1 + z_1^+),
\]
\[
F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2)^+, y_2 + z_2^-, x_2 - y_2^- - (y_1^- - z_1)^-, y_1 - z_2^-),
\]
• For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and

\[
F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1^+), y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1^-), y_1 + z_1^+),
\]
\[
F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2^+), y_2 + z_2^-, x_2 - y_2^- - (y_1^- - z_2^-), y_1 - z_2^-),
\]

with $z_1 = x_1 - y_1^- - x_2 + y_2^+$ and $z_2 = x_1 + y_1^- - x_2 - y_2^+$.
• For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and

 $F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1^+), y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1^-), y_1 + z_1^+)$,

 $F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2^+), y_2 + z_2^+, x_2 - y_2^- - (y_1^- - z_2^-), y_1 - z_2^-)$,

 with $z_1 = x_1 - y_1^- - x_2 + y_2^+$ and $z_2 = x_1 + y_1^- - x_2 - y_2^+$.

• Define an action of n-strand braid words on \mathbb{Z}^{2n} by

 $$(a_1, b_1, ..., a_n, b_n) \ast \sigma_i^e = (a'_1, b'_1, ..., a'_n, b'_n)$$
• For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and

$$F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1^+), y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1^-), y_1 + z_1^+),$$

$$F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2^+), y_2 + z_2^+, x_2 - y_2^- - (y_1^- - z_2^-), y_1 - z_2^-),$$

with $z_1 = x_1 - y_1^- - x_2 + y_2^+$ and $z_2 = x_1 + y_1^- - x_2 - y_2^+$.

• Define an action of n-strand braid words on \mathbb{Z}^{2n} by

$$(a_1, b_1, ..., a_n, b_n) \ast \sigma_i^e = (a'_1, b'_1, ..., a'_n, b'_n)$$

with $a'_k = a_k$ and $b'_k = b_k$ for $k \neq i, i+1$, and
• For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and
 \[
 F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1)^+, y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1)^-, y_1 + z_1^+),
 \]
 \[
 F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2)^+, y_2 + z_2^-, x_2 - y_2^- - (y_1^- - z_2)^-, y_1 - z_2^-),
 \]
 with $z_1 = x_1 - y_1^- - x_2 + y_2^+$ and $z_2 = x_1 + y_1^- - x_2 - y_2^+$.

• Define an action of n-strand braid words on \mathbb{Z}^{2n} by
 \[
 (a_1, b_1, ..., a_n, b_n) \ast \sigma_i^e = (a'_1, b'_1, ..., a'_n, b'_n)
 \]
 with $a'_k = a_k$ and $b'_k = b_k$ for $k \neq i, i+1$, and $(a'_i, b'_i, a'_{i+1}, b'_{i+1}) = F^e(a_i, b_i, a_{i+1}, b_{i+1})$.
• For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and

 $F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1)^+, y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1)^-, y_1 + z_1^+)$,

 $F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2)^+, y_2 + z_2^-, x_2 - y_2^- - (y_1^- - z_2)^-, y_1 - z_2^-)$,

 with $z_1 = x_1 - y_1^- - x_2 + y_2^+$ and $z_2 = x_1 + y_1^- - x_2 - y_2^+$.

• Define an action of n-strand braid words on \mathbb{Z}^{2n} by

 $$(a_1, b_1, ..., a_n, b_n) * \sigma_i^e = (a_1', b_1', ..., a_n', b_n')$$

 with $a_k' = a_k$ and $b_k' = b_k$ for $k \neq i, i+1$, and

 $$(a_i', b_i', a_{i+1}', b_{i+1}') = F^e(a_i, b_i, a_{i+1}, b_{i+1})$$

• Definition: The coordinates of an n-strand braid word w are $(0, 1, 0, 1, ..., 0, 1) * w$.
Dynnikov coordinates

- For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and
 \[
 F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1^+), y_2 - z_1^-),
 \]
 \[
 F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2^-), y_2 + z_2^-),
 \]
 with $z_1 = x_1 - y_1^- - x_2 + y_2^+$ and $z_2 = x_1 + y_1^- - x_2 - y_2^+$.

- Define an action of n-strand braid words on \mathbb{Z}^{2n} by
 \[
 (a_1, b_1, ..., a_n, b_n) * \sigma_i^e = (a'_1, b'_1, ..., a'_n, b'_n)
 \]
 with $a'_k = a_k$ and $b'_k = b_k$ for $k \neq i, i+1$, and $(a'_i, b'_i, a'_{i+1}, b'_{i+1}) = F^e(a_i, b_i, a_{i+1}, b_{i+1})$.

- **Definition**: The coordinates of an n-strand braid word w are $(0, 1, 0, 1, ..., 0, 1) * w$.

- **Theorem** (Dynnikov 2000): The coordinates of w only depend on the braid represented by w,
For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and

\[
F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1^+), y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1^-), y_1 + z_1^+),
\]

\[
F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2^+), y_2 + z_2^-, x_2 - y_2^- - (y_1^- - z_2^-), y_1 - z_2^-),
\]

with $z_1 = x_1 - y_1^- - x_2 + y_2^+$ and $z_2 = x_1 + y_1^- - x_2 - y_2^+$.

- Define an action of n-strand braid words on \mathbb{Z}^{2n} by

\[
(a_1, b_1, \ldots, a_n, b_n) \ast \sigma_i^e = (a'_1, b'_1, \ldots, a'_n, b'_n)
\]

with $a'_k = a_k$ and $b'_k = b_k$ for $k \neq i, i+1$, and $(a'_i, b'_i, a'_{i+1}, b'_{i+1}) = F^e(a_i, b_i, a_{i+1}, b_{i+1})$.

- Definition: The coordinates of an n-strand braid word w are $(0, 1, 0, 1, \ldots, 0, 1) \ast w$.

- Theorem (Dynnikov 2000): The coordinates of w only depend on the braid represented by w, and they characterize the latter.
• For \(x \in \mathbb{Z} \), put \(x^+ = \max(0, x) \), \(x^- = \min(x, 0) \), and
\[
F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1)^+, y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1)^-, y_1 + z_1^+),
\]
\[
F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^+ - (y_2^+ + z_2)^+, y_2 + z_2^-, x_2 - y_2^- - (y_1^- - z_2)^-, y_1 - z_2^-),
\]
with \(z_1 = x_1 - y_1^- - x_2 + y_2^+ \) and \(z_2 = x_1 + y_1^- - x_2 - y_2^+ \).

• Define an action of \(n \)-strand braid words on \(\mathbb{Z}^{2n} \) by
\[
(a_1, b_1, \ldots, a_n, b_n) \ast \sigma_i^e = (a'_1, b'_1, \ldots, a'_n, b'_n)
\]
with \(a'_k = a_k \) and \(b'_k = b_k \) for \(k \neq i, i+1 \), and \((a'_i, b'_i, a'_{i+1}, b'_{i+1}) = F^e(a_i, b_i, a_{i+1}, b_{i+1})\).

• Definition: The coordinates of an \(n \)-strand braid word \(w \) are \((0, 1, 0, 1, \ldots, 0, 1) \ast w\).

• Theorem (Dynnikov 2000): The coordinates of \(w \) only depend on the braid represented by \(w \), and they characterize the latter.

▷ Hence: a new solution of the Braid Isotopy Problem:
• For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and

 $F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1^+), y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1^-), \ y_1 + z_1^+),$

 $F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^- - (y_2^+ + z_2^-), y_2 + z_2^-, x_2 - y_2^- - (y_1^- - z_2^-), \ y_1 - z_2^-),$

 with $z_1 = x_1 - y_1^- - x_2 + y_2^+$ and $z_2 = x_1 + y_1^- - x_2 - y_2^+$.

• Define an action of n-strand braid words on \mathbb{Z}^{2n} by

 $(a_1, b_1, ..., a_n, b_n) * \sigma_i^e = (a'_1, b'_1, ..., a'_n, b'_n)$

 with $a'_k = a_k$ and $b'_k = b_k$ for $k \neq i, i+1$, and $(a'_i, b'_i, a'_{i+1}, b'_{i+1}) = F^e(a_i, b_i, a_{i+1}, b_{i+1}).$

• Definition: The coordinates of an n-strand braid word w are $(0, 1, 0, 1, ..., 0, 1) * w$.

• Theorem (Dynnikov 2000): The coordinates of w only depend on the braid represented by w, and they characterize the latter.

 ▶ Hence: a new solution of the Braid Isotopy Problem:

 a braid word w represents 1 iff its Dynnikov coordinates are $(0, 1, 0, 1, ..., 0, 1)$.

Dynnikov coordinates
Dynnikov coordinates

- For $x \in \mathbb{Z}$, put $x^+ = \max(0, x)$, $x^- = \min(x, 0)$, and
 \[
 F^+(x_1, y_1, x_2, y_2) = (x_1 + y_1^+ + (y_2^+ - z_1)^+, y_2 - z_1^+, x_2 + y_2^- + (y_1^- + z_1)^-, y_1 + z_1^+),
 \]
 \[
 F^-(x_1, y_1, x_2, y_2) = (x_1 - y_1^- - (y_2^+ + z_2)^+, y_2 + z_2^-, x_2 - y_2^- - (y_1^- - z_2)^-, y_1 - z_2^-),
 \]
 with $z_1 = x_1 - y_1^- - x_2 + y_2^+$ and $z_2 = x_1 + y_1^- - x_2 - y_2^+$.

- Define an action of n-strand braid words on \mathbb{Z}^{2n} by
 \[
 (a_1, b_1, \ldots, a_n, b_n) \ast \sigma_i^e = (a'_1, b'_1, \ldots, a'_n, b'_n)
 \]
 with $a'_k = a_k$ and $b'_k = b_k$ for $k \neq i, i+1$, and
 \[
 (a'_i, b'_i, a'_{i+1}, b'_{i+1}) = F^e(a_i, b_i, a_{i+1}, b_{i+1}).
 \]

- Definition: The coordinates of an n-strand braid word w are $(0, 1, 0, 1, \ldots, 0, 1) \ast w$.

- Theorem (Dynnikov 2000): The coordinates of w only depend on the braid represented by w, and they characterize the latter.

 - Hence: a new solution of the Braid Isotopy Problem: a braid word w represents 1 iff its Dynnikov coordinates are $(0, 1, 0, 1, \ldots, 0, 1)$.
 - An extremely efficient method: “linear space, quadratic time complexity”
• Braid-homeomorphism of D_n acts on curves drawn in D_n.
• Braid homeomorphism of D_n acts on curves drawn in D_n.
• Braid homeomorphism of D_n acts on curves drawn in D_n.
• Braid = homeomorphism of D_n acts on curves drawn in D_n.
• Braid-homeomorphism of D_n acts on curves drawn in D_n.

\[\sigma_1 \rightarrow \]
• Braid=homeomorphism of D_n acts on curves drawn in D_n.

\[\sigma_1 \to \sigma_{2^{-1}} \to \]
• Braid=homeomorphism of D_n acts on curves drawn in D_n.

\[\sigma_1 \rightarrow \sigma_1 \rightarrow \sigma_1 \rightarrow \sigma_1 \rightarrow \sigma_2^{-1} \rightarrow \]
• Braid-homeomorphism of D_n acts on curves drawn in D_n.
• Braid=$\text{homeomorphism of } D_n$ acts on curves drawn in D_n.

• Count intersections with a fixed triangulation:
• Braid-homeomorphism of D_n acts on curves drawn in D_n.

• Count intersections with a fixed triangulation:
• Braid=homeomorphism of D_n acts on curves drawn in D_n.

• Count intersections with a fixed triangulation:
• Braid = homeomorphism of D_n acts on curves drawn in D_n.

• Count intersections with a fixed triangulation:
• Braid \cong homeomorphism of D_n acts on curves drawn in D_n.

• Count intersections with a fixed triangulation:
• Braid homeomorphism of D_n acts on curves drawn in D_n.

• Count intersections with a fixed triangulation:
• Braid=homeomorphism of D_n acts on curves drawn in D_n.

• Count intersections with a fixed triangulation:
• Braid=homeomorphism of D_n acts on curves drawn in D_n.

• Count intersections with a fixed triangulation:
• Braid-homeomorphism of D_n acts on curves drawn in D_n.

• Count intersections with a fixed triangulation:
• Braid = homeomorphism of D_n acts on curves drawn in D_n.

- Count intersections with a fixed triangulation:
- Braid=homeomorphism of D_n acts on curves drawn in D_n.

- Count intersections with a fixed triangulation:
• Braid = homeomorphism of D_n acts on curves drawn in D_n.

Count intersections with a fixed triangulation:
- Braid-homeomorphism of D_n acts on curves drawn in D_n.

- Count intersections with a fixed triangulation:
• Braid=homeomorphism of D_n acts on curves drawn in D_n.

• Count intersections with a fixed triangulation:
- Braid = homeomorphism of D_n acts on curves drawn in D_n.

- Count intersections with a fixed triangulation:

 $3n + 3$ numbers, which determine the braid
Updating coordinates
• **Fact:** The Dynnikov coordinates are the half-differences between the previous intersection numbers. (going from $3n + 3$ downto $2n$)
• **Fact**: The Dynnikov coordinates are the half-differences between the previous intersection numbers. (going from $3n + 3$ downto $2n$)

• **Problem**: Compute the coordinates of $\beta \sigma_i^{\pm 1}$ from those of β and i.
• **Fact**: The Dynnikov coordinates are the half-differences between the previous intersection numbers. (going from $3n + 3$ downto $2n$)

• **Problem**: Compute the coordinates of $\beta \sigma_i^{\pm 1}$ from those of β and i.
 - compare the intersections of L and $\sigma_i(L)$ with the (fixed) triangulation T
• **Fact**: The Dynnikov coordinates are the half-differences between the previous intersection numbers. (going from $3n + 3$ downto $2n$)

• **Problem**: Compute the coordinates of $\beta \sigma_i^\pm 1$ from those of β and i.
 ▶ compare the intersections of L and $\sigma_i(L)$ with the (fixed) triangulation T

• Main observation:

$$\#(\sigma_i(L) \cap T) = \#(L \cap \sigma_i^{-1}(T)).$$
• **Fact:** The Dynnikov coordinates are the half-differences between the previous intersection numbers. (going from $3n + 3$ downto $2n$)

• **Problem:** Compute the coordinates of $\beta \sigma_i^{\pm 1}$ from those of β and i.
 - compare the intersections of L and $\sigma_i(L)$ with the (fixed) triangulation T

• **Main observation:**
 $$\#(\sigma_i(L) \cap T) = \#(L \cap \sigma_i^{-1}(T)).$$
 - compare the intersections of L with T and $\sigma_i^{-1}(T)$.
• **Fact**: The Dynnikov coordinates are the half-differences between the previous intersection numbers. (going from $3n+3$ downto $2n$)

• **Problem**: Compute the coordinates of $\beta \sigma_i^{\pm 1}$ from those of β and i.
 ▶ compare the intersections of L and $\sigma_i(L)$ with the (fixed) triangulation T

• **Main observation**:

 $\#(\sigma_i(L) \cap T) = \#(L \cap \sigma_i^{-1}(T))$.

 ▶ compare the intersections of L with T and $\sigma_i^{-1}(T)$.

• **Lemma**: If T, T' are any two (singular) triangulations, one can go from T to T' using a finite sequence of flips.
• **Fact:** The Dynnikov coordinates are the half-differences between the previous intersection numbers. (going from $3n+3$ downto $2n$)

• **Problem:** Compute the coordinates of $\beta \sigma_i^{\pm 1}$ from those of β and i.
 ▶ compare the intersections of L and $\sigma_i(L)$ with the (fixed) triangulation T

• **Main observation:**
 \[
 \#(\sigma_i(L) \cap T) = \#(L \cap \sigma_i^{-1}(T)).
 \]
 ▶ compare the intersections of L with T and $\sigma_i^{-1}(T)$.

• **Lemma:** If T, T' are any two (singular) triangulations,
 one can go from T to T' using a finite sequence of flips.
• Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.
• Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.
Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.
Hence: One **must** go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.
Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.
• Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.
Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.
Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.
Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.
• Hence: One **must** go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.
• Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.
• Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.

• For one flip, the formula is
• Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.

• For one flip, the formula is
• Hence: One **must** go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.

• For **one** flip, the formula is
• Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.

• For one flip, the formula is

\[
\begin{align*}
&x_1 x_2 x_3 x_4 \\
&x_1 x_2 x_3 x_4
\end{align*}
\]
• Hence: One must go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.

• For one flip, the formula is

\[
x + x' =
\]
• Hence: One **must** go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.

• For one flip, the formula is

$$x + x' = \max(x_1 + x_3, x_2 + x_4)$$
• Hence: One **must** go from T to $\sigma_i^{-1}(T)$ by a finite sequence of flips.

• For one flip, the formula is

$$x + x' = \max(x_1 + x_3, x_2 + x_4)$$

- Dynnikov’s formulas when iterating four times (four flips).
Plan:

- 1. The braid isotopy problem
- 2. Greedy normal form and the Garside structure
- 3. Dynnikov’s coordinates
- 4. Bressaud’s relaxation algorithm
• Here again: n-strand braid = (isotopy class of) homeomorphism of D_n
• Here again: n-strand braid $= (\text{isotopy class of})$ homeomorphism of D_n

• **Principle**: Fix one (or several) base curve C,
• Here again: \(n \)-strand braid = (isotopy class of) homeomorphism of \(D_n \)

• **Principle:** Fix one (or several) base curve \(C \),
 - define a relaxation strategy for unbraiding \(\beta(C) \) and coming back to \(C \):
• Here again: \(n \)-strand braid = (isotopy class of) homeomorphism of \(D_n \)

• **Principle**: Fix one (or several) base curve \(C \),
 - define a relaxation strategy for unbraiding \(\beta(C) \) and coming back to \(C \):
 - the sequence of \(\sigma_i^{\pm 1} \) used to unbraid \(\beta \) gives a distinguished expression of \(\beta^{-1} \) (hence a normal form)
• Here again: n-strand braid $= (isotopy \ class \ of) \ homeomorphism \ of \ D_n$

• **Principle**: Fix one (or several) base curve C,
 ▶ define a relaxation strategy for unbraiding $\beta(C)$ and coming back to C:
 ▶ the sequence of $\sigma_i^{\pm 1}$ used to unraid β gives a distinguished expression of β^{-1} (hence a normal form)
 ▶ requires to define a complexity notion first.
• Here again: \(n \)-strand braid = (isotopy class of) homeomorphism of \(D_n \)

• **Principle:** Fix one (or several) base curve \(C \),
 ▶ define a **relaxation strategy** for unbraiding \(\beta(C) \) and coming back to \(C \):
 ▶ the sequence of \(\sigma_i^{\pm 1} \) used to unbraid \(\beta \) gives a distinguished expression of \(\beta^{-1} \)
 (hence a normal form)
 ▶ requires to define a **complexity** notion first.

• **Exemple** (Fenn et al. 1997, Dynnikov–Wiest 2006):
• Here again: n-strand braid $= ($isotopy class of$)$ homeomorphism of D_n

• **Principle**: Fix one (or several) base curve C,
 ▶ define a relaxation strategy for unbraiding $\beta(C)$ and coming back to C:
 ▶ the sequence of $\sigma_i^{\pm 1}$ used to unbraid β gives a distinguished expression of β^{-1} (hence a normal form)
 ▶ requires to define a complexity notion first.

• **Exemple** (Fenn et al. 1997, Dynnikov–Wiest 2006):
 $C = \text{main diameter}$ of D_n,
• Here again: n-strand braid = (isotopy class of) homeomorphism of D_n

• **Principle:** Fix one (or several) base curve C,
 ▶ define a *relaxation strategy* for unbraiding $\beta(C)$ and coming back to C:
 ▶ the sequence of $\sigma_i^{\pm 1}$ used to unraid β gives a distinguished expression of β^{-1} (hence a normal form)
 ▶ requires to define a *complexity* notion first.

• **Exemple** (Fenn et al. 1997, Dynnikov–Wiest 2006):
 $C =$ main diameter of D_n, strategy $=$ consider the “useful arc”.
• Here again: n-strand braid $= \text{(isotopy class of)}$ homeomorphism of D_n

• **Principle**: Fix one (or several) base curve C,
 ► define a **relaxation strategy** for unbraiding $\beta(C)$ and coming back to C:
 ► the sequence of $\sigma_i^{\pm 1}$ used to unraid β gives a distinguished expression of β^{-1} (hence a normal form)
 ► requires to define a **complexity** notion first.

• **Exemple** (Fenn et al. 1997, Dynnikov–Wiest 2006):
 $C =$ main diameter of D_n, strategy $=$ consider the “useful arc”.

![Diagram showing a circle with points marked, representing the main diameter of D_n.](image-url)
• Here again: \(n \)-strand braid = (isotopy class of) homeomorphism of \(D_n \)

• **Principle**: Fix one (or several) base curve \(C \),
 ► define a relaxation strategy for unbraiding \(\beta(C) \) and coming back to \(C \):
 ► the sequence of \(\sigma_i^{\pm 1} \) used to unbraid \(\beta \) gives a distinguished expression of \(\beta^{-1} \) (hence a normal form)
 ► requires to define a complexity notion first.

• **Exemple** (Fenn et al. 1997, Dynnikov–Wiest 2006):
 \(C = \text{main diameter of } D_n \), strategy = consider the “useful arc”.
• Here again: n-strand braid $= (\text{isotopy class of})$ homeomorphism of D_n

• **Principle:** Fix one (or several) base curve C,
 ▶ define a relaxation strategy for unbraiding $\beta(C)$ and coming back to C:
 ▶ the sequence of $\sigma_i^{\pm 1}$ used to unraid β gives a distinguished expression of β^{-1} (hence a normal form)
 ▶ requires to define a complexity notion first.

• **Exemple** (Fenn et al. 1997, Dynnikov–Wiest 2006):
 $C = \text{main diameter} \text{ of } D_n$, strategy $= \text{consider the } \text{"useful arc"}$.
• Here again: \(n \)-strand braid = (isotopy class of) homeomorphism of \(D_n \)

• **Principle**: Fix one (or several) base curve \(C \),
 ▶ define a relaxation strategy for unbraiding \(\beta(C) \) and coming back to \(C \):
 ▶ the sequence of \(\sigma_i^{\pm 1} \) used to unraid \(\beta \) gives a distinguished expression of \(\beta^{-1} \) (hence a normal form)
 ▶ requires to define a complexity notion first.

• **Exemple** (Fenn et al. 1997, Dynnikov–Wiest 2006):
 \(C = \text{main diameter of } D_n \), strategy = consider the “useful arc”.

\[
\begin{align*}
\sigma_2^{-1} \sigma_1^{-1} & \quad \rightarrow \\
\end{align*}
\]
Here again: n-strand braid = (isotopy class of) homeomorphism of D_n

Principle: Fix one (or several) base curve C,
- define a relaxation strategy for unbraiding $\beta(C)$ and coming back to C:
 - the sequence of $\sigma_i^{\pm 1}$ used to unraid β gives a distinguished expression of β^{-1} (hence a normal form)
- requires to define a complexity notion first.

Exemple (Fenn et al. 1997, Dynnikov–Wiest 2006):
$C =$ main diameter of D_n, strategy = consider the “useful arc”.

\[\sigma_2^{-1} \sigma_1^{-1} \rightarrow \sigma_2 \sigma_1^{-1} \]
• Here again: n-strand braid = (isotopy class of) homeomorphism of D_n

• **Principle**: Fix one (or several) base curve C,
 ▶ define a relaxation strategy for unbraiding $\beta(C)$ and coming back to C:
 ▶ the sequence of $\sigma_i^{\pm 1}$ used to unraid β gives a distinguished expression of β^{-1} (hence a normal form)
 ▶ requires to define a complexity notion first.

• **Exemple** (Fenn et al. 1997, Dynnikov–Wiest 2006):
 $C =$ main diameter of D_n, strategy = consider the “useful arc”.

![Diagrams showing the process of unbraiding a braid with specific operations and notation.](image-url)
• Here again: \(n \)-strand braid = (isotopy class of) homeomorphism of \(D_n \)

• **Principle**: Fix one (or several) base curve \(C \),
 - define a **relaxation strategy** for unbraiding \(\beta(C) \) and coming back to \(C \):
 - the sequence of \(\sigma_i^{\pm 1} \) used to unbraid \(\beta \) gives a distinguished expression of \(\beta^{-1} \) (hence a normal form)
 - requires to define a **complexity** notion first.

• **Exemple** (Fenn et al. 1997, Dynnikov–Wiest 2006):
 \(C = \text{main diameter of } D_n \), strategy = consider the “useful arc”.

\[
\sigma_2^{-1} \sigma_1^{-1} \rightarrow \sigma_2 \sigma_1^{-1} \rightarrow \sigma_2^{-1} \rightarrow \sigma_2^{-1}
\]

whence \(\beta = \sigma_2 \sigma_1 \sigma_2^{-1} \sigma_1 \sigma_2 \)
• Here again: n-strand braid = (isotopy class of) homeomorphism of D_n

• **Principle**: Fix one (or several) base curve C,
 ▶ define a relaxation strategy for unbraiding $\beta(C)$ and coming back to C:
 ▶ the sequence of $\sigma_i^{\pm 1}$ used to unbraid β gives a distinguished expression of β^{-1} (hence a normal form)
 ▶ requires to define a complexity notion first.

• **Exemple** (Fenn et al. 1997, Dynnikov–Wiest 2006):
 C = main diameter of D_n, strategy = consider the “useful arc”.

 ![Diagram](image)
• **Exemple 2** (Bressaud 2005):
 - here $C = \text{axes of standard loops}$
• **Exemple 2** (Bressaud 2005):
 - here $C = \text{axes of standard loops}$
 - strategy: relax $\beta(x_1)$, then $\beta(x_2),...$ by diminishing the number of intersections with half-axes.
- **Exemple 2** (Bressaud 2005):
 - here $C =$ axes of standard loops
 - strategy: relax $\beta(x_1)$, then $\beta(x_2)$, ... by diminishing the number of intersections with half-axes.
• **Exemple 2** (Bressaud 2005):
 - here $C = \text{axes of standard loops}$
 - strategy: relax $\beta(x_1)$, then $\beta(x_2),...$ by diminishing the number of intersections with half-axes.

![Diagram showing the reduction of intersections with half-axes](image-url)
• **Exemple 2** (Bressaud 2005):
 - here $C = \text{axes of standard loops}$
 - strategy: relax $\beta(x_1)$, then $\beta(x_2),...$ by diminishing the number of intersections with half-axes.
- **Exemple 2** (Bressaud 2005):
 - here $C = \text{axes of standard loops}$
 - strategy: relax $\beta(x_1)$, then $\beta(x_2),...$ by diminishing the number of intersections with half-axes.

\[
\sigma_2 \rightarrow \sigma_1 \sigma_2^{-1} \rightarrow \sigma_1 \sigma_2
\]
• **Exemple 2** (Bressaud 2005):

 ▶ here \(C = \text{axes of standard loops} \)

 ▶ strategy: relax \(\beta(x_1) \), then \(\beta(x_2), \ldots \) by diminishing the number of intersections with half-axes.
• **Exemple 2** (Bressaud 2005):

 ▶ here $C =$ axes of standard loops

 ▶ strategy: relax $\beta(x_1)$, then $\beta(x_2),...$ by diminishing
 the number of intersections with half-axes.
• **Exemple 2** (Bressaud 2005):

 ▶ here $C = \text{axes of standard loops}$

 ▶ strategy: relax $\beta(x_1)$, then $\beta(x_2),...$ by diminishing the number of intersections with half-axes.

 ![Diagram showing the process from σ_2 to $\sigma_1 \sigma_2^{-1}$ to $\sigma_1 \sigma_2$]

 ▶ a normal form on B_n (whence a solution to the Braid Isotopy Problem),
• **Exemple 2** (Bressaud 2005):

 - here $C = \text{axes of standard loops}$

 - strategy: relax $\beta(x_1)$, then $\beta(x_2)$,... by diminishing the number of intersections with half-axes.

 ![Diagram showing the transformation of base loops](image)

 - a normal form on B_n (whence a solution to the Braid Isotopy Problem),
 - together with an algorithm computing $\text{NF}(w\sigma_i^{\pm 1})$ from $\text{NF}(w)$ and i.

• **Exemple 2** (Bressaud 2005):

 ▶ here $C = \text{axes of standard loops}$

 ▶ strategy: relax $\beta(x_1)$, then $\beta(x_2)$,... by diminishing the number of intersections with half-axes.

```
\[
\begin{align*}
\sigma_2 & \rightarrow \sigma_1 \sigma_2^{-1} & \rightarrow \sigma_1 \sigma_2
\end{align*}
\]
```

▶ a normal form on B_n (whence a solution to the Braid Isotopy Problem),

▶ together with an **algorithm** computing $NF(w\sigma_i^{\pm1})$ from $NF(w)$ and i.

• **Remark:** The Bressaud normal form has nothing to do with positive braids and B^+_n.
• **Exemple 2** (Bressaud 2005):

 - here $C = \text{axes of standard loops}$
 - strategy: relax $\beta(x_1)$, then $\beta(x_2)$,... by diminishing the number of intersections with half-axes.

 \[
 \sigma_2 \rightarrow \sigma_1 \sigma_2^{-1} \rightarrow \sigma_1 \sigma_2
 \]

 - a normal form on B_n (whence a solution to the Braid Isotopy Problem),
 - together with an **algorithm** computing $\text{NF}(w \sigma_i^{\pm 1})$ from $\text{NF}(w)$ and i.

• **Remark**: The Bressaud normal form has nothing to do with positive braids and B_{n+} (nor with B_{n+}^* either).
\(\sigma_1 : \)

\[
\begin{bmatrix}
1 & 2 & 3 & 4
\end{bmatrix}
\]
Bressaud's algorithm

\[\sigma_1 : \]

\[\sigma_2 : \]
Bressaud’s algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
Bressaud's algorithm

1 2 3 4

σ_1:

σ_2:

σ_3:

σ_1^{-1}:
Bressaud’s algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
Bressaud's algorithm

\[\sigma_1 : \]

\[\sigma_2 : \]

\[\sigma_3 : \]

\[\sigma_1^{-1} : \]

\[\sigma_2^{-1} : \]

\[\sigma_3^{-1} : \]

\[\sigma_1^{-1} \sigma_2^{-1} : \]
Bressaud's algorithm

\[\sigma_1 : \]

\[\sigma_2 : \]

\[\sigma_3 : \]

\[\sigma_1^{-1} : \]

\[\sigma_2^{-1} : \]

\[\sigma_3^{-1} : \]

\[\sigma_1^{-1} \sigma_2^{-1} : \]

\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

• Normal form of \(\varepsilon \) \(= \varepsilon \).
Bressaud’s algorithm

\[\sigma_1 : \quad 1 \quad 2 \quad 3 \quad 4 \]

\[\sigma_2 : \quad \]

\[\sigma_3 : \quad \]

\[\sigma_1^{-1} : \quad \]

\[\sigma_2^{-1} : \quad \]

\[\sigma_3^{-1} : \quad \]

\[\sigma_1^{-1} \sigma_2^{-1} : \quad \]

\[\sigma_2 \sigma_3 : \quad \]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \)
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces:
6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \)

\[= \sigma_1^{-1}. \]
Bressaud's algorithm

\[
\begin{align*}
\sigma_1 : & & \quad \quad \quad \quad & 1 & 2 & 3 & 4 \\
\sigma_2 : & & \quad \quad \quad \quad & & \quad \quad & \quad \quad & \quad \quad \\
\sigma_3 : & & \quad \quad \quad \quad & & \quad \quad & \quad \quad & \quad \quad \\
\sigma_1^{-1} : & & \quad \quad \quad \quad & & \quad \quad & \quad \quad & \quad \quad \\
\sigma_2^{-1} : & & \quad \quad \quad \quad & & \quad \quad & \quad \quad & \quad \quad \\
\sigma_3^{-1} : & & \quad \quad \quad \quad & & \quad \quad & \quad \quad & \quad \quad \\
\sigma_1^{-1} \sigma_2^{-1} : & & \quad \quad \quad \quad & & \quad \quad & \quad \quad & \quad \quad \\
\sigma_2 \sigma_3 : & & \quad \quad \quad \quad & & \quad \quad & \quad \quad & \quad \quad \\
\end{align*}
\]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of $\sigma_1^{-1} \sigma_2^{-1}$
Bressaud’s algorithm

• Normal form of $\sigma_1^{-1} \sigma_2^{-1}$

etc. (12 pieces: 6 positive, 6 negative)

$\sigma_1^{-1} \sigma_2^{-1} = \sigma_1^{-1} \sigma_2^{-1}$.
Bressaud's algorithm

\[
\begin{align*}
\sigma_1 : & \quad \sigma_2 : \\
\sigma_3 : & \quad \sigma_1^{-1} : \\
\sigma_2^{-1} : & \quad \sigma_3^{-1} : \\
\sigma_1^{-1} \sigma_2^{-1} : & \\
\sigma_2 \sigma_3 : & \\
\end{align*}
\]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \)
Bressaud’s algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \)
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \)

\[= \sigma_2 \sigma_1^{-1} \sigma_2^{-1}. \]
Bressaud’s algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \)
Bressaud’s algorithm

- \(\sigma_1 \): 1 2 3 4
- \(\sigma_2 \):
- \(\sigma_3 \):
- \(\sigma_1^{-1} \):
- \(\sigma_2^{-1} \):
- \(\sigma_3^{-1} \):
- \(\sigma_1^{-1} \sigma_2^{-1} \):
- \(\sigma_2 \sigma_3 \):

\[\text{etc. (12 pieces: 6 positive, 6 negative)} \]

- **Normal** form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \)
Bressaud’s algorithm

\[
\begin{align*}
\sigma_1 : & \quad 1 \quad 2 \quad 3 \quad 4 \\
\sigma_2 : & \quad 1 \quad 2 \quad 3 \quad 4 \\
\sigma_3 : & \quad 1 \quad 2 \quad 3 \quad 4 \\
\sigma_1^{-1} : & \quad 1 \quad 2 \quad 3 \quad 4 \\
\sigma_2^{-1} : & \quad 1 \quad 2 \quad 3 \quad 4 \\
\sigma_3^{-1} : & \quad 1 \quad 2 \quad 3 \quad 4 \\
\sigma_1^{-1}\sigma_2^{-1} : & \quad 1 \quad 2 \quad 3 \quad 4 \\
\sigma_2\sigma_3 : & \quad 1 \quad 2 \quad 3 \quad 4 \\
\end{align*}
\]

etc. (12 pieces: 6 positive, 6 negative)

• Normal form of \(\sigma_1^{-1}\sigma_2^{-1}\sigma_1\sigma_1 \) = \(\sigma_2\sigma_2\sigma_1^{-1}\sigma_2^{-1} \).
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \sigma_3^{-1} \)
Bressaud's algorithm

\[\sigma_1 : \quad 1 \quad 2 \quad 3 \quad 4 \]

\[\sigma_1^{-1} : \quad \text{etc.} \]

\[\sigma_2 : \quad \text{etc.} \]

\[\sigma_3 : \quad \text{etc.} \]

\[\sigma_2^{-1} : \quad \text{etc.} \]

\[\sigma_3^{-1} : \quad \text{etc.} \]

\[\sigma_1^{-1} \sigma_2^{-1} : \quad \text{etc.} \]

\[\sigma_2 \sigma_3 : \quad \text{etc.} \]

(12 pieces: 6 positive, 6 negative)

- **Normal form of** \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_3^{-1} \)

\[= \sigma_2 \sigma_2 \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1}. \]
Bressaud's algorithm

\[\sigma_1 : \quad \sigma_2 : \quad \sigma_3 : \]
\[\sigma_1^{-1} : \quad \sigma_2^{-1} : \quad \sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \quad \sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \)
Bressaud’s algorithm

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_1 :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_2 :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_3 :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_1^{-1} :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_2^{-1} :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_3^{-1} :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_1^{-1}\sigma_2^{-1}$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_2\sigma_3$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

etc. (12 pieces: 6 positive, 6 negative)

- **Normal** form of $\sigma_1^{-1}\sigma_2^{-1}\sigma_1\sigma_1\sigma_3^{-1}\sigma_1^{-1}$
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- **Normal** form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \)
Bressaud’s algorithm

\[
\begin{align*}
\sigma_1 : & \quad 1 \\
\sigma_2 : & \quad 2 \\
\sigma_3 : & \quad 3 \\
\sigma_1^{-1} : & \quad 4 \\
\sigma_1^{-1} \sigma_2^{-1} : & \quad 1, 2, 3, 4 \\
\sigma_2^{-1} : & \quad 1, 2, 3, 4 \\
\sigma_3^{-1} : & \quad 1, 2, 3, 4 \\
\sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1} : & \quad 1, 2, 3, 4 \\
\sigma_2 \sigma_3 : & \quad 1, 2, 3, 4 \\
\text{etc. (12 pieces: } & \\
& \text{6 positive, 6 negative)} \\
\text{Normal form of } & \\
& \sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_3^{-1} \sigma_1^{-1} = \sigma_2 \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1}.
\end{align*}
\]
Bressaud's algorithm

1 2 3 4

\(\sigma_1:\)
\(\sigma_2:\)
\(\sigma_3:\)
\(\sigma_1^{-1}:\)
\(\sigma_2^{-1}:\)
\(\sigma_3^{-1}:\)
\(\sigma_1^{-1}\sigma_2^{-1}:\)
\(\sigma_2\sigma_3:\)

etc. (12 pieces: 6 positive, 6 negative)

- **Normal** form of \(\sigma_1^{-1}\sigma_2^{-1}\sigma_1\sigma_3^{-1}\sigma_1^{-1}\sigma_2\)
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \sigma_2 \)
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces:
6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \sigma_2 \) = \(\sigma_2 \sigma_3 \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1} \).
Bressaud's algorithm

\[\begin{align*}
 \sigma_1 &: \\
 \sigma_2 &: \\
 \sigma_3 &: \\
 \sigma_1^{-1} &: \\
 \sigma_2^{-1} &: \\
 \sigma_3^{-1} &: \\
 \sigma_1^{-1} \sigma_2^{-1} &: \\
 \sigma_2 \sigma_3 &:
\end{align*} \]

etc. (12 pieces:
 6 positive, 6 negative)

- **Normal** form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \sigma_2 \sigma_3^{-1} \)
Bressaud’s algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \sigma_2 \sigma_3^{-1} \)
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \sigma_2 \sigma_3^{-1} \) = \(\sigma_2 \sigma_3 \sigma_2 \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1} \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1} \).
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- **Normal** form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \sigma_2 \sigma_3^{-1} \sigma_3 \)
Bressaud's algorithm

\[
\begin{align*}
\sigma_1 &: \\
\sigma_2 &: \\
\sigma_3 &: \\
\sigma_1^{-1} &: \\
\sigma_2^{-1} &: \\
\sigma_3^{-1} &: \\
\sigma_1^{-1}\sigma_2^{-1} &: \\
\sigma_2\sigma_3 &:
\end{align*}
\]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \(\sigma_1^{-1}\sigma_2^{-1}\sigma_1\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_3^{-1}\sigma_3\)
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- **Normal** form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \sigma_2 \sigma_3^{-1} \sigma_3 \)
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- **Normal** form of \(\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \sigma_2 \sigma_3^{-1} \sigma_3 \)
Bressaud's algorithm

\[\sigma_1 : \]
\[\sigma_2 : \]
\[\sigma_3 : \]
\[\sigma_1^{-1} : \]
\[\sigma_2^{-1} : \]
\[\sigma_3^{-1} : \]
\[\sigma_1^{-1} \sigma_2^{-1} : \]
\[\sigma_2 \sigma_3 : \]

etc. (12 pieces: 6 positive, 6 negative)

- Normal form of \[\sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_3^{-1} \sigma_1^{-1} \sigma_2 \sigma_3^{-1} \sigma_3 = \sigma_2 \sigma_3 \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1}. \]
Bressaud’s algorithm

\[\sigma_1 : \]

\[\sigma_2 : \]

\[\sigma_3 : \]

\[\sigma_1^{-1} : \]

\[\sigma_2^{-1} : \]

\[\sigma_3^{-1} : \]

\[\sigma_1^{-1}\sigma_2^{-1} : \]

\[\sigma_2\sigma_3 : \]

e tc. (12 pieces:
 6 positive, 6 negative)

• Normal form of \(\sigma_1^{-1}\sigma_2^{-1}\sigma_1\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_3^{-1}\sigma_3\) \(= \sigma_2\sigma_3\sigma_1^{-1}\sigma_2^{-1}\sigma_3^{-1}\).
On the Garside approach:

On the Garside approach:

On the Garside approach:

On the Dynnikov coordinates:

On the Garside approach:

On the Dynnikov coordinates:

On relaxation methods:

On the Garside approach:

On the Dynnikov coordinates:

On relaxation methods:

On the Garside approach:

- **P. Dehornoy**, with **F. Digne, D. Krammer, J. Michel**, Foundations of Garside Theory,

On the Dynnikov coordinates:

- **P. Dehornoy**, with **I. Dynnikov, D. Rolfsen, B. Wiest**, Ordering braids,

On relaxation methods:

- **R. Fenn, M.T. Greene, D. Rolfsen, C. Rourke, B. Wiest**, *Ordering the braid groups*,

www.math.unicaen.fr/~dehornoy